Suppr超能文献

The pro-hypertrophic basic helix-loop-helix protein p8 is degraded by the ubiquitin/proteasome system in a protein kinase B/Akt- and glycogen synthase kinase-3-dependent manner, whereas endothelin induction of p8 mRNA and renal mesangial cell hypertrophy require NFAT4.

作者信息

Goruppi Sandro, Kyriakis John M

机构信息

Molecular Cardiology Research Institute, Tufts-New England Medical Center and the Department of Medicine, Tufts University School of Medicine, 750 Washington Street, Boston, MA 02111, USA.

出版信息

J Biol Chem. 2004 May 14;279(20):20950-8. doi: 10.1074/jbc.M312401200. Epub 2004 Mar 11.

Abstract

Renal disease is a common complication of diabetes. The initiating events in diabetic nephropathy are triggered by hyperglycemia and, possibly, advanced glycation end products. Subsequently, excess levels of vasoactive peptides (especially endothelin-1 (ET-1)) accumulate in the diabetic kidney, and there is evidence that these peptides mediate many of the pathophysiological changes associated with diabetic renal disease. These changes include an excess deposition of extracellular matrix proteins into the glomerular basement membrane and renal mesangial cell hypertrophy. Our transcriptional profiling studies have revealed that the p8 gene, which encodes a putative basic helix-loop-helix protein, is strongly induced in ET-1-treated renal mesangial cells and in an animal model of diabetic nephropathy. RNA interference experiments indicated that the p8 gene is required for ET-1-induced mesangial cell hypertrophy. Here, we show that the p8 polypeptide is a phosphoprotein subject to constitutive degradation by the ubiquitin/proteasome system. This degradation is mediated by phosphatidylinositol 3-kinase and protein kinase B/Akt. By contrast, stabilization of the p8 protein requires glycogen synthase kinase-3. Finally, short interfering RNA-mediated RNA interference experiments indicated that ET-1-stimulated mesangial cell hypertrophy and p8 mRNA induction require the NFAT4 transcription factor. Thus, p8 levels in the cell are likely maintained by a balance between signal-dependent transcriptional induction and proteolysis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验