Bocchiaro Christopher M, Feldman Jack L
Systems Neurobiology Laboratory, Departments of Neurobiology and Physiological Science, University of California-Los Angeles, Los Angeles, CA 90095-1763, USA.
Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4292-5. doi: 10.1073/pnas.0305712101. Epub 2004 Mar 15.
Potentiation and depression of glutamate receptor function in hippocampal, cerebellar, and cortical neurons are examples of persistent changes in synaptic function that underlie important behavioral adaptations such as learning and memory. Persistent changes in synaptic function relevant for motor behaviors have not been demonstrated in mammalian motoneurons. We demonstrate that adaptive changes in (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) receptor function at endogenously active synapses occur in motoneurons in neonatal rodents. We found a form of serotonin (5-HT)-dependent synaptic plasticity in hypoglossal (XII) motoneurons, which control tongue muscles affecting upper airway function, that is metamodulated by metabotropic glutamate receptors. Episodic, but not continuous, activation of postsynaptic 5-HT type 2 (5-HT(2)) receptors on hypoglossal (XII) motoneurons leads to long-lasting increases in their AMPA receptor-mediated respiratory drive currents and associated XII nerve motor output. Antagonism of group-I metabotropic glutamate receptors blocks induction of the 5-HT-induced increase in excitability. We propose that this activity-independent postsynaptic 5-HT-mediated plasticity represents the cellular mechanism underlying long-term facilitation, i.e., persistent increases in respiratory motor output and ventilation seen in humans and rodents in response to episodic hypoxia. Loss of activity in XII motoneurons is common during sleep causing snoring and, in serious cases, airway obstruction that interrupts breathing, a condition known as obstructive sleep apnea. These results may provide the basis for rationale development of therapeutics for obstructive sleep apnea in humans.
海马体、小脑和皮质神经元中谷氨酸受体功能的增强和抑制,是突触功能持续变化的例子,这些变化是学习和记忆等重要行为适应的基础。与运动行为相关的突触功能的持续变化在哺乳动物运动神经元中尚未得到证实。我们证明,新生啮齿动物的运动神经元中,内源性活跃突触处的(±)-α-氨基-3-羟基-5-甲基异恶唑-4-丙酸氢溴酸盐(AMPA)受体功能会发生适应性变化。我们发现,舌下(XII)运动神经元中存在一种依赖血清素(5-HT)的突触可塑性,该神经元控制影响上呼吸道功能的舌肌,且这种可塑性受代谢型谷氨酸受体的调制。舌下(XII)运动神经元上的突触后5-HT 2型(5-HT(2))受体的间歇性而非持续性激活,会导致其AMPA受体介导的呼吸驱动电流和相关的XII神经运动输出长期增加。I组代谢型谷氨酸受体的拮抗作用会阻断5-HT诱导的兴奋性增加的诱导过程。我们提出,这种与活动无关的突触后5-HT介导的可塑性代表了长期易化的细胞机制,即人类和啮齿动物在间歇性缺氧时出现的呼吸运动输出和通气的持续增加。XII运动神经元活动丧失在睡眠期间很常见,会导致打鼾,严重时会导致气道阻塞,中断呼吸,这种情况称为阻塞性睡眠呼吸暂停。这些结果可能为人类阻塞性睡眠呼吸暂停治疗方法的合理开发提供依据。