Suppr超能文献

通过在碳氢化合物/水界面添加偶极子来调节双层间水合压力。

Modulation of the interbilayer hydration pressure by the addition of dipoles at the hydrocarbon/water interface.

作者信息

Simon S A, McIntosh T J, Magid A D, Needham D

机构信息

Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710.

出版信息

Biophys J. 1992 Mar;61(3):786-99. doi: 10.1016/S0006-3495(92)81883-0.

Abstract

The effects of the cholesterol analog 5 alpha-cholestan-3 beta-ol-6-one (6-ketocholestanol) on bilayer structure, bilayer cohesive properties, and interbilayer repulsive pressures have been studied by a combination of x-ray diffraction, pipette aspiration, and dipole potential experiments. It is found that 6-ketocholestanol, which has a similar structure to cholesterol except with a keto moiety at the 6 position of the B ring, has quite different effects than cholesterol on bilayer organization and cohesive properties. Unlike cholesterol, 6-ketocholestanol does not appreciably modify the thickness of liquid-crystalline egg phosphatidylcholine (EPC) bilayers, and causes a much smaller increase in bilayer compressibility modulus than does cholesterol. These data imply that 6-ketocholestanol has both its hydroxyl and keto moieties situated near the water-hydrocarbon interface, thus making its orientation in the bilayer different from cholesterol's. The addition of equimolar 6-ketocholestanol into EPC bilayers increases the magnitude, but not the decay length, of the exponentially decaying repulsive hydration pressure between adjacent bilayers. Incorporation of equimolar 6-ketocholestanol into EPC monolayers increases the dipole potential by approximately 300 mV. These data are consistent with our previous observation that the magnitude of the hydration pressure is proportional to the square of the dipole potential. These results mean that 6-ketocholestanol, despite its location in the bilayer hydrocarbon region, approximately 10 A from the physical edge of the bilayer, modifies the organization of interlamellar water. We argue that the incorporation of 6-ketocholestanol into EPC bilayers increases the hydration pressure, at least in part, by increasing the electric field strength in the polar head group region.

摘要

通过X射线衍射、微量移液管抽吸和偶极电势实验相结合的方法,研究了胆固醇类似物5α-胆甾烷-3β-醇-6-酮(6-酮胆甾醇)对双层结构、双层内聚性质和双层间排斥压力的影响。研究发现,6-酮胆甾醇与胆固醇结构相似,只是在B环的6位有一个酮基部分,但其对双层组织和内聚性质的影响与胆固醇有很大不同。与胆固醇不同,6-酮胆甾醇不会明显改变液晶态鸡蛋卵磷脂(EPC)双层的厚度,并且与胆固醇相比,其导致双层压缩模量的增加要小得多。这些数据表明,6-酮胆甾醇的羟基和酮基部分都位于水-烃界面附近,因此其在双层中的取向与胆固醇不同。向EPC双层中加入等摩尔的6-酮胆甾醇会增加相邻双层之间指数衰减的排斥水合压力的大小,但不会增加其衰减长度。将等摩尔的6-酮胆甾醇掺入EPC单层中会使偶极电势增加约300 mV。这些数据与我们之前的观察结果一致,即水合压力的大小与偶极电势的平方成正比。这些结果意味着,6-酮胆甾醇尽管位于双层烃区域,距离双层的物理边缘约10埃,但会改变层间水的组织。我们认为,将6-酮胆甾醇掺入EPC双层中至少部分地通过增加极性头部基团区域的电场强度来增加水合压力。

相似文献

3
4
Interbilayer interactions between sphingomyelin and sphingomyelin/cholesterol bilayers.
Biochemistry. 1992 Feb 25;31(7):2020-4. doi: 10.1021/bi00122a018.
6
Temperature dependence of the repulsive pressure between phosphatidylcholine bilayers.
Biophys J. 1995 Oct;69(4):1473-83. doi: 10.1016/S0006-3495(95)80017-2.
8
Long- and short-range interactions between phospholipid/ganglioside GM1 bilayers.
Biochemistry. 1994 Aug 30;33(34):10477-86. doi: 10.1021/bi00200a032.
9
Structure and interactive properties of highly fluorinated phospholipid bilayers.
Biophys J. 1996 Oct;71(4):1853-68. doi: 10.1016/S0006-3495(96)79385-2.

引用本文的文献

1
Dipole Potential of Monolayers with Biologically Relevant Lipid Compositions.
Molecules. 2024 Dec 11;29(24):5843. doi: 10.3390/molecules29245843.
3
6
Fluorescence techniques for probing water penetration into lipid bilayers.
J Fluoresc. 1995 Mar;5(1):19-28. doi: 10.1007/BF00718779.
7
Phloretin-induced reduction in dipole potential of sterol-containing bilayers.
J Membr Biol. 2013 Dec;246(12):985-91. doi: 10.1007/s00232-013-9603-2. Epub 2013 Oct 16.
9
Fluorescence techniques for determination of the membrane potentials in high throughput screening.
J Fluoresc. 2010 Nov;20(6):1139-57. doi: 10.1007/s10895-010-0665-6.
10
Effects of amyloid beta-peptides on the lysis tension of lipid bilayer vesicles containing oxysterols.
Biophys J. 2008 Jul;95(2):620-8. doi: 10.1529/biophysj.107.114983. Epub 2008 Apr 4.

本文引用的文献

1
Thermoelasticity of large lecithin bilayer vesicles.
Biophys J. 1981 Sep;35(3):637-52. doi: 10.1016/S0006-3495(81)84817-5.
2
The adsorption of divalent cations to phosphatidylglycerol bilayer membranes.
Biochim Biophys Acta. 1981 Jul 20;645(2):279-92. doi: 10.1016/0005-2736(81)90199-1.
3
Influence of cholesterol on water penetration into bilayers.
Science. 1982 Apr 2;216(4541):65-7. doi: 10.1126/science.7063872.
4
Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine.
Biochim Biophys Acta. 1981 Jun 16;650(1):21-51. doi: 10.1016/0304-4157(81)90007-1.
6
Treatment of low angle x-ray data from planar and concentric multilayered structures.
Biophys J. 1966 May;6(3):305-12. doi: 10.1016/S0006-3495(66)86658-4.
7
Formation and properties of thin-walled phospholipid vesicles.
J Cell Physiol. 1969 Feb;73(1):49-60. doi: 10.1002/jcp.1040730108.
8
Monolayer characteristics of some 1,2-diacyl, I-alkyl-2-acyl and 1,2-dialkyl phospholipids at the air-water interface.
Biochim Biophys Acta. 1971 Dec 3;249(2):539-47. doi: 10.1016/0005-2736(71)90129-5.
9
Structural requirements of sterols for the interaction with lecithin at the air water interface.
Biochim Biophys Acta. 1972 Jan 17;255(1):311-20. doi: 10.1016/0005-2736(72)90030-2.
10
Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases.
J Mol Biol. 1973 Apr 25;75(4):711-33. doi: 10.1016/0022-2836(73)90303-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验