Davlieva Milya G, Lü Jian-Ming, Lindeman Sergey V, Kochi Jay K
Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA.
J Am Chem Soc. 2004 Apr 14;126(14):4557-65. doi: 10.1021/ja049856k.
The classic nitrobenzene anion-radical (NB(-) or nitrobenzenide) is isolated for the first time as pure crystalline alkali-metal salts. The deliberate use of the supporting ligands 18-crown-6 and [2.2.2]cryptand allows the selective formation of contact ion pairs designated as (crown)M(+)NB(-), where M(+) = K(+), Rb(+), and Cs(+), as well as the separated ion pair K(cryptand)(+)NB(-)-both series of which are structurally characterized by precise low-temperature X-ray crystallography, ESR analysis, and UV-vis spectroscopy. The unusually delocalized structure of NB(-) in the separated ion pair follows from the drastically shortened N-C bond and marked quinonoidal distortion of the benzenoid ring to signify complete (95%) electronic conjugation with the nitro substituent. On the other hand, the formation of contact ion pairs results in the substantial decrease of electronic conjugation in inverse order with cation size (K(+) > Rb(+)) owing to increased localization of negative charge from partial (NO(2)) bonding to the alkali-metal cation. Such a loss in electronic conjugation (or reverse charge transfer) may be counterintuitive, but it is in agreement with the distribution of odd-electron spin electron density from the ESR data and with the hypsochromic shift of the characteristic absorption band in the electronic spectra. Most importantly, this crystallographic study underscores the importance of ion-pair structure on the intrinsic property (and thus reactivity) of the component ions-as focused here on the nitrobenzenide anion.
经典的硝基苯阴离子自由基(NB(-)或硝基苯化物)首次以纯结晶碱金属盐的形式被分离出来。特意使用的配位体18-冠-6和[2.2.2]穴醚使得能够选择性地形成指定为(crown)M(+)NB(-)的接触离子对,其中M(+) = K(+)、Rb(+)和Cs(+),以及分离的离子对K(cryptand)(+)NB(-)——这两个系列都通过精确的低温X射线晶体学、电子顺磁共振(ESR)分析和紫外可见光谱对其结构进行了表征。在分离的离子对中,NB(-)异常离域的结构源于N-C键的大幅缩短以及苯环明显的醌型畸变,这表明与硝基取代基完全(95%)电子共轭。另一方面,接触离子对的形成导致电子共轭随着阳离子尺寸(K(+) > Rb(+))呈相反顺序大幅降低,这是由于从部分(NO(2))键合到碱金属阳离子的负电荷局域化增加所致。这种电子共轭的损失(或反向电荷转移)可能有违直觉,但它与ESR数据中奇电子自旋电子密度的分布以及电子光谱中特征吸收带的紫移相一致。最重要的是,这项晶体学研究强调了离子对结构对组成离子固有性质(进而反应活性)的重要性——这里重点关注硝基苯化物阴离子。