Laarmann T, De Castro A R B, Gürtler P, Laasch W, Schulz J, Wabnitz H, Möller T
Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
Phys Rev Lett. 2004 Apr 9;92(14):143401. doi: 10.1103/PhysRevLett.92.143401.
The response of Ar clusters to intense vacuum-ultraviolet pulses is investigated with photoion spec-troscopy. By varying the laser wavelength, the initial excitation was either tuned to absorption bands of surface or bulk atoms of clusters. Multiple ionization is observed, which leads to Coulomb explosion. The efficiency of resonant 2-photon ionization for initial bulk and surface excitation is compared with that of the nonresonant process at different laser intensities. The specific electronic structure of clusters plays almost no role in the explosion dynamics at a peak intensity larger than 1.8 x 10(12) W/cm(2). The inner ionization of atoms for resonant and nonresonant excitation is then saturated and the energy deposition is mainly controlled by the plasma heating rate. Molecular dynamics simulations indicate that standard collisional heating cannot fully account for the strong energy absorption.
利用光离子光谱研究了氩团簇对强真空紫外脉冲的响应。通过改变激光波长,初始激发可被调谐至团簇表面或体相原子的吸收带。观察到了多电离现象,这导致了库仑爆炸。在不同激光强度下,将初始体相和表面激发的共振双光子电离效率与非共振过程的效率进行了比较。在峰值强度大于1.8×10¹²W/cm²时,团簇的特定电子结构在爆炸动力学中几乎不起作用。对于共振和非共振激发,原子的内电离随后达到饱和,能量沉积主要由等离子体加热速率控制。分子动力学模拟表明,标准的碰撞加热不能完全解释强烈的能量吸收。