Mitavskiy Boris
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA.
Evol Comput. 2004 Spring;12(1):19-46. doi: 10.1162/evco.2004.12.1.19.
This paper addresses the relationship between schemata and crossover operators. In Appendix A a general mathematical framework is developed which reveals an interesting correspondence between the families of reproduction transformations and the corresponding collections of invariant subsets of the search space. On the basis of this mathematical apparatus it is proved that the family of masked crossovers is, for all practical purposes, the largest family of transformations whose corresponding collection of invariant subsets is the family of Antonisse's schemata. In the process, a number of other interesting facts are shown. It is proved that the full dynastic span of a given subset of the search space under either one of the traditional families of crossover transformations (one-point crossovers or masked crossovers) is obtained after [log2n] iterations where n is the dimension of the search space. The generalized notion of invariance introduced in the current paper unifies Radcliffe's notions of "respect" and "gene transmission". Besides providing basic tools for the theoretical analysis carried out in the current paper, the general facts established in Appendix A provide a way to extend Radcliffe's notion of "genetic representation function" to compare various evolutionary computation techniques via their representation.
本文探讨了模式与交叉算子之间的关系。在附录A中,我们构建了一个通用的数学框架,该框架揭示了繁殖变换族与搜索空间相应不变子集集合之间的有趣对应关系。基于这一数学工具,我们证明了对于所有实际应用而言,掩码交叉族是变换族中最大的一个,其相应的不变子集集合是安东尼塞模式族。在此过程中,还展示了许多其他有趣的事实。我们证明了在传统交叉变换族(单点交叉或掩码交叉)中的任何一个之下,搜索空间给定子集的完整王朝跨度在[log2n]次迭代后获得,其中n是搜索空间的维度。本文引入的广义不变性概念统一了拉德克利夫的“尊重”和“基因传递”概念。附录A中确立的一般事实不仅为本文进行的理论分析提供了基本工具,还提供了一种扩展拉德克利夫“遗传表示函数”概念的方法,以便通过各种进化计算技术的表示来比较它们。