Luu Nganha C, Robinson Scott, Zhao R, McKean R, Ridge Douglas P
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
Eur J Mass Spectrom (Chichester). 2004;10(2):279-87. doi: 10.1255/ejms.634.
The pseudo-tetrapeptide designated here as RGD (N-ethyl-N-[1-oxo-4-(4-piperidinyl) butyl] glycyl-L-alpha- aspartyl-3-cyclohexyl-L-alaninamide) and its isomer with beta-aspartic acid rather than alpha-aspartic acid were examined using electrospray ionization (ESI) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). RGD has potential as a thrombosis inhibitor and the isomer, designated here as isopeptide, is an inactive instability product; hence, means were sought to distinguish the two. Both isomers give a protonated parent on ESI and fragments typical of peptides on sustained off resonance irradiation collision-induced decomposition (SORI-CID). Cleavage at the aspartic acid (b(3)) is the dominant process in both isomers, although a significant b(2) and smaller a(2)" and c(2)" peaks are also observed. More distinctive are peaks observed at b(3)-H(2)O, b(3)-(CO + CO(2)) and, only in the case of the RGD, b(3) - (H(2)O + CO). SORI CID on the b(3) ion indicates that, of these distinctive peaks, only the b(3)-(CO + CO(2)) comes from decomposition of the b(3) ion. On this basis, a mechanism is suggested for b(3) formation, involving proton transfer from a back-bone carbonyl to the aspartic acid side-chain carboxyl group. Such an intramolecular proton transfer involves rings of different sizes for the two isomers, providing a basis for the different SORI energy dependences. A mechanism suggested for the formation of the b(3)-H(2)O fragments also involves proton transfer to the aspartic acid side chain carboxyl group. This leads to concomitant H(2)O loss and amide bond cleavage, giving the b(3)-H(2)O ions with ketene moieties resulting from the water loss. According to the suggested mechanism, the observed loss of CO (verified by SORI-CID on the b(3)- H(2)O ion) from the RGD b(3)-H(2)O peak results in a secondary carbocation stabilized by an adjacent nitrogen. The unobserved loss of CO from the b(3)-H(2)O ion, formed by the suggested mechanism from the isopeptide, would give an unstable primary carbocation lacking a neighboring nitrogen. The mechanism, thus, only rationalizes the observation of a b(3)-(H(2)O + CO) fragment in RGD and not in the isopeptide. The isomers can be distinguished on the basis of this unique peak or on the basis of the different SORI energy dependence of the formation of the b(3) ions.
在此将其指定为RGD的拟四肽(N - 乙基 - N - [1 - 氧代 - 4 -(4 - 哌啶基)丁基]甘氨酰 - L - α - 天冬氨酰 - 3 - 环己基 - L - 丙氨酰胺)及其含有β - 天冬氨酸而非α - 天冬氨酸的异构体,使用电喷雾电离(ESI)和傅里叶变换离子回旋共振质谱(FT - ICR - MS)进行了检测。RGD具有作为血栓形成抑制剂的潜力,而该异构体在此被指定为异肽,是一种无活性的不稳定产物;因此,人们寻求区分两者的方法。两种异构体在ESI上均给出质子化母体,并且在持续非共振辐照碰撞诱导分解(SORI - CID)时给出典型的肽片段。在两种异构体中,天冬氨酸处的裂解(b(3))是主要过程,不过也观察到显著的b(2)以及较小的a(2)"和c(2)"峰。更具特色的是在b(3) - H₂O、b(3) - (CO + CO₂)处观察到的峰,并且仅在RGD的情况下,还观察到b(3) - (H₂O + CO)。对b(3)离子进行SORI CID表明,在这些特色峰中,只有b(3) - (CO + CO₂)来自b(3)离子的分解。在此基础上,提出了一种b(3)形成的机制,涉及从主链羰基到天冬氨酸侧链羧基的质子转移。这种分子内质子转移对于两种异构体涉及不同大小的环,为不同的SORI能量依赖性提供了基础。提出的b(3) - H₂O片段形成机制也涉及向天冬氨酸侧链羧基的质子转移。这导致伴随H₂O损失和酰胺键裂解,产生带有因水损失而形成的乙烯酮部分的b(3) - H₂O离子。根据所提出的机制,从RGD的b(3) - H₂O峰观察到的CO损失(通过对b(3) - H₂O离子进行SORI - CID验证)导致由相邻氮稳定的仲碳正离子。由所提出的机制从异肽形成的b(3) - H₂O离子未观察到的CO损失,将产生缺乏相邻氮的不稳定伯碳正离子。因此,该机制仅合理地解释了在RGD中观察到b(3) - (H₂O + CO)片段而在异肽中未观察到这一现象。可以基于这个独特的峰或基于b(3)离子形成的不同SORI能量依赖性来区分这两种异构体。