von Lewinski Dirk, Stumme Burkhard, Fialka Florian, Luers Claus, Pieske Burkert
Department of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany.
Circ Res. 2004 May 28;94(10):1392-8. doi: 10.1161/01.RES.0000129181.48395.ff. Epub 2004 Apr 22.
Stretch induces immediate and delayed inotropic effects in mammalian myocardium via distinct mechanosensitive pathways, but these effects are poorly characterized in human cardiac muscle. We tested the effects of stretch on immediate and delayed force response in failing human myocardium. Experiments were performed in muscle strips from 52 failing human hearts (37 degrees C, 1 Hz, bicarbonate buffer). Muscles were stretched from 88% of optimal length to 98% of optimal length. The resulting immediate and delayed (ie, slow force response [SFR]) increases in twitch force were assessed without and after blockade of the sarcoplasmic reticulum (SR; cyclopiazonic acid and ryanodine), stretch-activated ion channels (SACs; gadolinium, streptomycin), L-type Ca2+-channels (diltiazem), angiotensin II type-1 (AT1) receptors (candesartan), endothelin (ET) receptors (PD145065 or BQ123), Na+/H+ exchange (NHE1; HOE642), or reverse-mode Na+/Ca+ exchange (NCX; KB-R7493). We also tested the effects of stretch on SR Ca2+ load (rapid cooling contractures [RCCs]) and intracellular pH (in BCECF-loaded trabeculae). Stretch induced an immediate (<10 beats), followed by a slow (5 to 10 minutes), force response. Twitch force increased to 232+/-6% of prestretch value during the immediate phase, followed by a further increase to 279+/-8% during the SFR. RCC amplitude significantly increased, but pHi did not change during SFR. Inhibition of SACs, L-type Ca2+ channels, AT1 receptors, or ET receptors did not affect the stretch-dependent immediate or SFR. In contrast, the SFR was reduced by NHE1 inhibition and almost completely abolished by reverse-mode NCX inhibition or blockade of sarcoplasmic reticulum function. The data demonstrate the existence of a functionally relevant, SR-Ca2+-dependent SFR in failing human myocardium, which partly depends on NHE1 and reverse-mode NCX activation.
牵张通过不同的机械敏感途径在哺乳动物心肌中诱导即刻和延迟的变力效应,但这些效应在人类心肌中的特征尚不明确。我们测试了牵张对衰竭人类心肌即刻和延迟力反应的影响。实验在取自52颗衰竭人类心脏的肌肉条上进行(37℃,1Hz,碳酸氢盐缓冲液)。肌肉从最佳长度的88%被拉伸至最佳长度的98%。在阻断肌浆网(SR;环匹阿尼酸和Ryanodine)、牵张激活离子通道(SACs;钆、链霉素)、L型Ca2+通道(地尔硫䓬)、血管紧张素II 1型(AT1)受体(坎地沙坦)、内皮素(ET)受体(PD145065或BQ123)、Na+/H+交换体(NHE1;HOE642)或反向模式Na+/Ca2+交换体(NCX;KB-R7493)之前和之后,评估由此产生的即刻和延迟(即慢力反应[SFR])的收缩力增加情况。我们还测试了牵张对SR Ca2+负荷(快速冷却收缩[RCCs])和细胞内pH(在装载BCECF的小梁中)的影响。牵张诱导了即刻(<10次搏动),随后是缓慢(5至10分钟)的力反应。在即刻阶段,收缩力增加至预拉伸值的232±6%,随后在SFR期间进一步增加至279±8%。RCC幅度显著增加,但在SFR期间pHi没有变化。抑制SACs、L型Ca2+通道、AT1受体或ET受体并不影响牵张依赖性即刻或SFR。相反,NHE1抑制降低了SFR,而反向模式NCX抑制或肌浆网功能阻断几乎完全消除了SFR。数据表明,在衰竭人类心肌中存在功能相关的、依赖于SR-Ca2+的SFR,其部分依赖于NHE1和反向模式NCX的激活。