Song HanJoon M, Fong Kenton D, Nacamuli Randall P, Warren Stephen M, Fang Tony D, Mathy Jonathan A, Cowan Catherine M, Aalami Oliver O, Longaker Michael T
Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305-5148, USA.
Plast Reconstr Surg. 2004 May;113(6):1685-97. doi: 10.1097/01.prs.0000117363.43699.5b.
Using a physiologic model of mouse cranial suture fusion, the authors' laboratory has previously demonstrated that transforming growth factor (TGF)-betas appear to be more abundantly expressed in the suture complex of the fusing posterior frontal compared with the patent sagittal suture. Furthermore, the authors have shown that by blocking TGF-beta signaling with a replication-deficient adenovirus encoding a defective, dominant negative type II TGF-beta receptor (AdDN-TbetaRII), posterior frontal suture fusion was inhibited. In this study, the authors attempt to further elucidate the role of TGF-beta in cranial suture fusion by investigating possible mechanisms of AdDN-TbetaRII-mediated cranial suture patency using both an established organ culture model and a novel in vitro co-culture system that recapitulates the in vivo anatomic dura mater/cranial suture relationship. In this article, the authors demonstrate that blocking TGF-beta signaling with the AdDN-TbetaRII construct led to inhibition of cellular proliferation in the suture mesenchyme and subjacent dura mater during the early period of predicted posterior frontal suture fusion. Interestingly, co-culture experiments revealed that transfecting osteoblasts with AdDN-TbetaRII led to alterations in the gene expression levels of two important bone-related molecules (Msx2 and osteopontin). Inhibiting TGF-beta signaling prevented time-dependent suppression of Msx2 and prevented induction of osteopontin, thereby retarding osteoblast differentiation. Furthermore, the authors demonstrated that the AdDN-TbetaRII construct was capable of blocking TGF-beta -mediated up-regulation of collagen IalphaI, an extracellular matrix molecule important for bone formation. Collectively, these data strongly suggest that AdDN-TbetaRII maintains posterior frontal patency, in part by altering early events in de novo bone formation, including cellular proliferation and early extracellular matrix production.
利用小鼠颅骨缝融合的生理模型,作者所在实验室先前已证明,与未融合的矢状缝相比,转化生长因子(TGF)-β在融合的额后缝的缝复合物中表达更为丰富。此外,作者还表明,通过用编码有缺陷的显性负性II型TGF-β受体的复制缺陷型腺病毒(AdDN-TbetaRII)阻断TGF-β信号传导,额后缝融合受到抑制。在本研究中,作者试图通过使用已建立的器官培养模型和一种模拟体内硬脑膜/颅骨缝关系的新型体外共培养系统,研究AdDN-TbetaRII介导的颅骨缝开放的可能机制,以进一步阐明TGF-β在颅骨缝融合中的作用。在本文中,作者证明,用AdDN-TbetaRII构建体阻断TGF-β信号传导会导致在预测的额后缝融合早期,缝间充质和下方硬脑膜中的细胞增殖受到抑制。有趣的是,共培养实验表明,用AdDN-TbetaRII转染成骨细胞会导致两种重要的骨相关分子(Msx2和骨桥蛋白)的基因表达水平发生改变。抑制TGF-β信号传导可防止Msx2随时间的抑制,并防止骨桥蛋白的诱导,从而延缓成骨细胞分化。此外,作者还证明,AdDN-TbetaRII构建体能够阻断TGF-β介导的I型胶原α1(一种对骨形成很重要的细胞外基质分子)的上调。总的来说,这些数据强烈表明,AdDN-TbetaRII维持额后缝开放,部分是通过改变从头骨形成的早期事件,包括细胞增殖和早期细胞外基质产生。