Bendtsen Jannick Dyrløv, Jensen Lars Juhl, Blom Nikolaj, Von Heijne Gunnar, Brunak Søren
Center for Biological Sequence Analysis BioCentrum-DTU, Building 208, Technical University of Denmark, DK-2800 Lyngby, Denmark.
Protein Eng Des Sel. 2004 Apr;17(4):349-56. doi: 10.1093/protein/gzh037. Epub 2004 Apr 28.
We present a sequence-based method, SecretomeP, for the prediction of mammalian secretory proteins targeted to the non-classical secretory pathway, i.e. proteins without an N-terminal signal peptide. So far only a limited number of proteins have been shown experimentally to enter the non-classical secretory pathway. These are mainly fibroblast growth factors, interleukins and galectins found in the extracellular matrix. We have discovered that certain pathway-independent features are shared among secreted proteins. The method presented here is also capable of predicting (signal peptide-containing) secretory proteins where only the mature part of the protein has been annotated or cases where the signal peptide remains uncleaved. By scanning the entire human proteome we identified new proteins potentially undergoing non-classical secretion. Predictions can be made at http://www.cbs.dtu.dk/services/SecretomeP.
我们提出了一种基于序列的方法——SecretomeP,用于预测靶向非经典分泌途径的哺乳动物分泌蛋白,即没有N端信号肽的蛋白。到目前为止,仅有数量有限的蛋白经实验证明进入非经典分泌途径。这些蛋白主要是在细胞外基质中发现的成纤维细胞生长因子、白细胞介素和半乳糖凝集素。我们发现分泌蛋白之间共享某些不依赖途径的特征。这里介绍的方法还能够预测仅对蛋白成熟部分进行注释的(含信号肽的)分泌蛋白,或信号肽未被切割的情况。通过扫描整个人类蛋白质组,我们鉴定出可能经历非经典分泌的新蛋白。可在http://www.cbs.dtu.dk/services/SecretomeP进行预测。