Miller Lance D, McPhie Peter, Suzuki Hideyo, Kato Yasuhito, Liu Edison T, Cheng Sheue-yann
1Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore, 138672.
Genome Biol. 2004;5(5):R31. doi: 10.1186/gb-2004-5-5-r31. Epub 2004 Apr 29.
Resistance to thyroid hormone (RTH) is caused by mutations of the thyroid hormone receptor beta (TRbeta) gene. To understand the transcriptional program underlying TRbeta mutant-induced phenotypic expression of RTH, cDNA microarrays were used to profile the expression of 11,500 genes in a mouse model of human RTH.
We analyzed transcript levels in cerebellum, heart and white adipose tissue from a knock-in mouse (TRbetaPV/PV mouse) that harbors a human mutation (referred to as PV) and faithfully reproduces human RTH. Because TRbetaPV/PV mice have elevated thyroid hormone (T3), to define T3-responsive genes in the context of normal TRbeta, we also analyzed T3 effects in hyperthyroid wild-type gender-matched littermates. Microarray analysis revealed 163 genes responsive to T3 treatment and 187 genes differentially expressed between TRbetaPV/PV mice and wild-type littermates. Both the magnitude and gene make-up of the transcriptional response varied widely across tissues and conditions. We identified genes modulated in T3-dependent PV-independent, T3- and PV-dependent, and T3-independent PV-dependent pathways that illuminated the biological consequences of PV action in vivo. Most T3-responsive genes that were dysregulated in the heart and white adipose tissue of TRbetaPV/PV mice were repressed in T3-treated wild-type mice and upregulated in TRbetaPV/PV mice, suggesting the inappropriate activation of T3-suppressed genes in RTH.
Comprehensive multi-tissue gene-expression analysis uncovered complex multiple signaling pathways that mediate the molecular actions of TRbeta mutants in vivo. In particular, the T3-independent mutant-dependent genomic response unveiled the contribution of a novel 'change-of-function' of TRbeta mutants to the pathogenesis of RTH. Thus, the molecular actions of TRbeta mutants are more complex than previously envisioned.
甲状腺激素抵抗(RTH)是由甲状腺激素受体β(TRβ)基因突变引起的。为了了解TRβ突变体诱导的RTH表型表达背后的转录程序,利用cDNA微阵列分析了人类RTH小鼠模型中11500个基因的表达情况。
我们分析了一只携带人类突变(称为PV)并能忠实地重现人类RTH的基因敲入小鼠(TRβPV/PV小鼠)的小脑、心脏和白色脂肪组织中的转录水平。由于TRβPV/PV小鼠的甲状腺激素(T3)水平升高,为了在正常TRβ的背景下定义T3反应性基因,我们还分析了甲状腺功能亢进的野生型同性别同窝小鼠中T3的作用。微阵列分析揭示了163个对T3治疗有反应的基因以及187个在TRβPV/PV小鼠和野生型同窝小鼠之间差异表达的基因。转录反应的幅度和基因组成在不同组织和条件下差异很大。我们确定了在T3依赖但PV不依赖、T3和PV依赖以及T3不依赖但PV依赖的途径中被调节的基因,这些基因揭示了PV在体内作用的生物学后果。TRβPV/PV小鼠心脏和白色脂肪组织中大多数失调的T3反应性基因在T3处理的野生型小鼠中被抑制,而在TRβPV/PV小鼠中上调,这表明RTH中T3抑制基因的不适当激活。
全面的多组织基因表达分析揭示了介导TRβ突变体在体内分子作用的复杂多信号通路。特别是,T3不依赖但突变体依赖的基因组反应揭示了TRβ突变体的一种新型“功能改变”对RTH发病机制的贡献。因此,TRβ突变体的分子作用比以前设想的更为复杂。