Sommerfeld Mark R, Metzger Sabine, Stosik Magdalene, Tennagels Norbert, Eckel Jürgen
Department of Clinical Biochemistry and Pathobiochemistry, German Diabetes Research Institute, Germany.
Biochemistry. 2004 May 18;43(19):5888-901. doi: 10.1021/bi049640v.
Protein kinase C-zeta (PKC-zeta) participates both in downstream insulin signaling and in the negative feedback control of insulin action. Here we used an in vitro approach to identify PKC-zeta phosphorylation sites within insulin receptor substrate 1 (IRS-1) and to characterize the functional implications. A recombinant IRS-1 fragment (rIRS-1(449)(-)(664)) containing major tyrosine motifs for interaction with phosphatidylinositol (PI) 3-kinase strongly associated to the p85alpha subunit of PI 3-kinase after Tyr phosphorylation by the insulin receptor. Phosphorylation of rIRS-1(449)(-)(664) by PKC-zeta induced a prominent inhibition of this process with a mixture of classical PKC isoforms being less effective. Both PKC-zeta and the classical isoforms phosphorylated rIRS-1(449)(-)(664) on Ser(612). However, modification of this residue did not reduce the affinity of p85alpha binding to pTyr-containing peptides (amino acids 605-615 of rat IRS-1), as determined by surface plasmon resonance. rIRS-1(449)(-)(664) was then phosphorylated by PKC-zeta using [(32)P]ATP and subjected to tryptic phosphopeptide mapping based on two-dimensional HPLC coupled to mass spectrometry. Ser(498) and Ser(570) were identified as novel phosphoserine sites targeted by PKC-zeta. Both sites were additionally confirmed by phosphopeptide mapping of the corresponding Ser --> Ala mutants of rIRS-1(449)(-)(664). Ser(570) was specifically targeted by PKC-zeta, as shown by immunoblotting with a phosphospecific antiserum against Ser(570) of IRS-1. Binding of p85alpha to the S570A mutant was less susceptible to inhibition by PKC-zeta, when compared to the S612A mutant. In conclusion, our in vitro data demonstrate a strong inhibitory action of PKC-zeta at the level of IRS-1/PI 3-kinase interaction involving multiple serine phosphorylation sites. Whereas Ser(612) appears not to participate in the negative control of insulin signaling, Ser(570) may at least partly contribute to this process.
蛋白激酶C-ζ(PKC-ζ)既参与胰岛素信号传导的下游过程,也参与胰岛素作用的负反馈调控。在此,我们采用体外实验方法来鉴定胰岛素受体底物1(IRS-1)内的PKC-ζ磷酸化位点,并对其功能意义进行表征。一个包含与磷脂酰肌醇(PI)3-激酶相互作用的主要酪氨酸基序的重组IRS-1片段(rIRS-1(449)(-)(664))在被胰岛素受体酪氨酸磷酸化后,与PI 3-激酶的p85α亚基紧密结合。PKC-ζ对rIRS-1(449)(-)(664)的磷酸化显著抑制了这一过程,而一组经典PKC同工型的抑制效果则较差。PKC-ζ和经典同工型均使rIRS-1(449)(-)(664)的Ser(612)发生磷酸化。然而,通过表面等离子体共振测定,该位点的修饰并未降低p85α与含pTyr肽段(大鼠IRS-1的氨基酸605 - 615)的结合亲和力。然后使用[³²P]ATP使rIRS-1(449)(-)(664)被PKC-ζ磷酸化,并基于二维高效液相色谱与质谱联用进行胰蛋白酶磷酸肽图谱分析。Ser(498)和Ser(570)被鉴定为PKC-ζ靶向的新磷酸丝氨酸位点。通过对rIRS-1(449)(-)(664)相应的Ser→Ala突变体进行磷酸肽图谱分析,进一步证实了这两个位点。用针对IRS-1的Ser(570)的磷酸特异性抗血清进行免疫印迹分析表明,Ser(570)是PKC-ζ的特异性靶向位点。与S612A突变体相比,p85α与S570A突变体的结合受PKC-ζ抑制的敏感性较低。总之,我们的体外实验数据表明,PKC-ζ在IRS-1/PI 3-激酶相互作用水平上具有强大的抑制作用,涉及多个丝氨酸磷酸化位点。虽然Ser(612)似乎不参与胰岛素信号的负调控,但Ser(570)可能至少部分参与了这一过程。