Suppr超能文献

用于大分子生物传感的蛋白质、识别网络与开发界面

Proteins, recognition networks and developing interfaces for macromolecular biosensing.

作者信息

Sergi Mauro, Zurawski John, Cocklin Simon, Chaiken Irwin

机构信息

Department of Biochemistry and A. J. Drexel Institute of Basic and Applied Protein Science, Drexel University College of Medicine, 11102 New College Building, MS 497, 245 N. 15th Street, Philadelphia, PA 19102, USA.

出版信息

J Mol Recognit. 2004 May-Jun;17(3):198-208. doi: 10.1002/jmr.671.

Abstract

Genomics and proteomics discovery is leading to the identification of all proteins and to the opportunity, and challenge, to reveal the protein recognition networks that drive virtually all biological processes. Over the past decade, biosensors have emerged as a key technology for detection and analysis of biomolecular interactions. An important limitation in developing such biosensors is that the focus has been mainly on sensor platforms, the transducing hardware that converts interaction signals into recorded data, without adequately considering the role of molecular interfaces, the elements of sensors that interact with analytes to produce signals. We have investigated this alternative focus by identifying and, where necessary, designing molecular interfaces that will more effectively drive new biosensor development and utilization in biomedical and biotechnological investigations. Here we describe our recent studies of coiled coil and lipid bilayer interfaces and the potential to use these to expand sensing technologies for multiplexed target detection and analysis in increasingly biologically relevant membrane like environments.

摘要

基因组学和蛋白质组学的发现正引领着对所有蛋白质的识别,并带来了揭示驱动几乎所有生物过程的蛋白质识别网络的机遇与挑战。在过去十年中,生物传感器已成为检测和分析生物分子相互作用的关键技术。开发此类生物传感器的一个重要局限在于,主要关注点一直是传感器平台,即将相互作用信号转换为记录数据的传感硬件,而没有充分考虑分子界面的作用,即传感器中与分析物相互作用以产生信号的元件。我们通过识别并在必要时设计分子界面来研究这一不同的关注点,这些分子界面将更有效地推动新型生物传感器在生物医学和生物技术研究中的开发与应用。在此,我们描述了我们最近对卷曲螺旋和脂质双分子层界面的研究,以及利用这些界面扩展传感技术以在越来越类似于生物膜的环境中进行多重目标检测和分析的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验