Shah Yatrik M, Basrur Venkatesha, Rowan Brian G
Department of Biochemistry & Molecular Biology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, OH 43614-5804, USA.
Mol Cell Endocrinol. 2004 Apr 30;219(1-2):127-39. doi: 10.1016/j.mce.2004.01.003.
Tamoxifen is the primary hormonal therapy for breast cancer and is also used as a breast cancer chemopreventative agent. A major problem with tamoxifen therapy is undesirable endometrial proliferation. To identify proteins associated with the growth stimulatory effects of tamoxifen in an ER-positive model, the present study profiled total cellular and secreted proteins regulated by estradiol and selective estrogen receptor modifiers (SERMs) in the Ishikawa endometrial adenocarcinoma cell line using two-dimensional gel electrophoresis. Following 24 h incubation with 10(-8) M estradiol, 10(-7) M 4-hydroxytamoxifen, or 10(-7) M EM-652 (Acolbifene), nine proteins exhibited significant increase in expression. The proteins identified were heat shock protein 90-alpha, and -beta, heterogeneous nuclear ribonucleoprotein F, RNA polymerase II-mediating protein, cytoskeletal keratin 8, cytoskeletal keratin 18, ubiquitin-conjugating enzyme E2-18 kDa and nucleoside diphosphate kinase B. These protein profiles may serve as novel indices of SERM response and may also provide insight into novel mechanisms of SERM-mediated growth.