Jin Young-Ho, Bailey Timothy W, Li Bai-Yan, Schild John H, Andresen Michael C
Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA.
J Neurosci. 2004 May 19;24(20):4709-17. doi: 10.1523/JNEUROSCI.0753-04.2004.
Vanilloid (VR1) and purinergic (P2X) receptors are found in cranial afferent neurons in nodose ganglia and their central terminations within the solitary tract nucleus (NTS), but little is known about their function. We mechanically dissociated dorsomedial NTS neurons to preserve attached native synapses and tested for VR1 and P2X function primarily in spindle-shaped neurons resembling intact second-order neurons. All neurons (n = 95) exhibited spontaneous glutamate (EPSCs) and GABA (IPSCs)-mediated synaptic currents. VR1 agonist capsaicin (CAP; 100 nm) reversibly increased EPSC frequency, effects blocked by capsazepine. ATP (100 microm) increased EPSC frequency, actions blocked by P2X antagonist pyridoxalphosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS; 20 microm). In all CAP-resistant neurons, P2X agonist alphabeta-methylene-ATP (alphabeta-m-ATP) increased EPSC frequency. Neither CAP nor alphabeta-m-ATP altered EPSC amplitudes, kinetics, or holding currents. Thus, activation of VR1 and P2X receptors selectively facilitated presynaptic glutamate release on different NTS neurons. PPADS and 2',3'-O-(2,4,6-trinitrophenyl)-ATP blocked alphabeta-m-ATP responses, but P2X1-selective antagonist NF023 (8,8'-[carbonylbis (imino-3,1-phenylene carbonylimino)]bis-1,3,5-naphthalenetrisulfonic acid) did not. The pharmacological profile and transient kinetics of ATP responses are consistent with P2X3 homomeric receptors. TTX and Cd(2+) did not eliminate agonist-evoked EPSC frequency increases, suggesting that voltage-gated sodium and calcium channels are not required. In nodose ganglia, CAP but not alphabeta-m-ATP evoked inward currents in slow conducting neurons and the converse pattern in myelinated, rapidly conducting neurons (n = 14). Together, results are consistent with segregation of glutamatergic terminals into either P2X sensitive or VR1 sensitive that correspondingly identify myelinated and unmyelinated afferent pathways at the NTS.
香草酸(VR1)和嘌呤能(P2X)受体存在于结状神经节的颅传入神经元及其孤束核(NTS)内的中枢终末中,但对其功能了解甚少。我们机械分离背内侧NTS神经元以保留附着的天然突触,并主要在类似于完整二级神经元的纺锤形神经元中测试VR1和P2X的功能。所有神经元(n = 95)均表现出自发性谷氨酸(EPSCs)和GABA(IPSCs)介导的突触电流。VR1激动剂辣椒素(CAP;100 nM)可逆性增加EPSC频率,其作用被辣椒素阻断剂所阻断。ATP(100 μM)增加EPSC频率,其作用被P2X拮抗剂吡哆醛磷酸-6-偶氮苯-2',4'-二磺酸(PPADS;20 μM)阻断。在所有对CAP耐药的神经元中,P2X激动剂αβ-亚甲基-ATP(αβ-m-ATP)增加EPSC频率。CAP和αβ-m-ATP均未改变EPSC幅度、动力学或钳制电流。因此,VR1和P2X受体的激活选择性地促进了不同NTS神经元上突触前谷氨酸的释放。PPADS和2',3'-O-(2,4,6-三硝基苯基)-ATP阻断了αβ-m-ATP反应,但P2X1选择性拮抗剂NF023(8,8'-[羰基双(亚氨基-3,1-亚苯基羰基亚氨基)]双-1,3,5-萘三磺酸)未阻断。ATP反应的药理学特征和瞬态动力学与P2X3同聚体受体一致。河豚毒素(TTX)和镉(2+)并未消除激动剂诱发的EPSC频率增加,表明不需要电压门控钠通道和钙通道。在结状神经节中,CAP而非αβ-m-ATP在慢传导神经元中诱发内向电流,而在有髓鞘的快传导神经元中则呈现相反的模式(n = 14)。总之,结果与谷氨酸能终末分为对P2X敏感或对VR1敏感相一致,这相应地确定了NTS处有髓鞘和无髓鞘传入通路。