Cummings Brian S, Gelasco Andrew K, Kinsey Gilbert R, McHowat Jane, Schnellmann Rick G
Department of Pharmaceutical Sciences, Division of Nephrology, Medical University of South Carolina, 280 Calhoun Street, Charleston, SC 29425, USA.
J Am Soc Nephrol. 2004 Jun;15(6):1441-51. doi: 10.1097/01.asn.0000127923.57438.ec.
The purpose of this study was to determine the actions of oxidants on endoplasmic reticulum bound Ca(2+)-independent phospholipase A(2) (ER-iPLA(2)) and phospholipids in renal cells. Exposure of renal proximal tubule cells (RPTC) to the oxidants tert-butyl hydroperoxide (TBHP), cumene hydroperoxide, and cisplatin resulted in time- and concentration-dependent decreases in the activity of ER-iPLA(2). TBHP-induced ER-iPLA(2) inactivation was reversed by the addition of dithiothreitol to microsomes isolated from treated RPTC. TBHP also directly inactivated ER-iPLA(2) in microsomes isolated from untreated RPTC. Similar to RPTC, dithiothreitol prevented TBHP-induced ER-iPLA(2) inactivation in microsomes as did the reactive oxygen scavengers butylated hydroxytoluene and N,N'-diphenyl-p-phenylenediamine and the iron chelator deferoxamine. Electron paramagnetic resonance spin trapping demonstrated that TBHP initiated a carbon-centered radical after 1 min of exposure in microsomes, preceding ER-iPLA(2) inactivation, and further studies suggested that the formation of the carbon-centered radical species occurred after or in concert with the formation of oxygen-centered radicals. Phospholipid content was determined after TBHP exposure in the presence and absence of the ER-iPLA(2) inhibitor bromoenol lactone. Treatment of RPTC with TBHP resulted in 35% decreases in (16:0, 20:4)-phosphatidylethanolamine (PtdEtn), (18:0, 18:1)-plasmenylethanolamine (PlsEtn), a 30% decrease in (16:0, 18:3)-phosphatidylcholine (PtdCho), and a 25% decrease in (16:0, 20:4)-phosphatidylcholine (PtdCho). In contrast, treatment of RPTC with bromoenol lactone before TBHP exposure decreased the content of 11 phospholipids, decreasing a majority of PlsEtn phospholipids 60%, and 4 of the 8 PlsCho phospholipids 40%, while PtdCho and PtdEtn were marginally affected compared with TBHP. These data demonstrate that ER-iPLA(2) is inactivated by oxidants, that the mechanism of inactivation involves the oxidation of ER-iPLA(2) sulfhydryl groups, and that ER-iPLA(2) inhibition increases oxidant-induced RPTC phospholipid loss.
本研究的目的是确定氧化剂对肾细胞内质网结合的钙离子非依赖性磷脂酶A2(ER-iPLA2)和磷脂的作用。将肾近端小管细胞(RPTC)暴露于氧化剂叔丁基过氧化氢(TBHP)、异丙苯过氧化氢和顺铂中,会导致ER-iPLA2活性出现时间和浓度依赖性降低。通过向从经处理的RPTC中分离出的微粒体中添加二硫苏糖醇,可逆转TBHP诱导的ER-iPLA2失活。TBHP还能直接使从未经处理的RPTC中分离出的微粒体中的ER-iPLA2失活。与RPTC类似,二硫苏糖醇可防止TBHP诱导微粒体中的ER-iPLA2失活,活性氧清除剂丁基化羟基甲苯和N,N'-二苯基对苯二胺以及铁螯合剂去铁胺也有同样的效果。电子顺磁共振自旋捕获表明,TBHP在暴露于微粒体1分钟后引发了一个以碳为中心的自由基,先于ER-iPLA2失活,进一步研究表明,以碳为中心的自由基物种的形成发生在以氧为中心的自由基形成之后或与之同时发生。在存在和不存在ER-iPLA2抑制剂溴苯醇内酯的情况下,测定TBHP暴露后的磷脂含量。用TBHP处理RPTC导致(16:0, 20:4)-磷脂酰乙醇胺(PtdEtn)、(18:0, 18:1)-缩醛磷脂酰乙醇胺(PlsEtn)减少35%,(16:0, 18:3)-磷脂酰胆碱(PtdCho)减少30%,(16:0, 20:4)-磷脂酰胆碱(PtdCho)减少25%。相比之下,在TBHP暴露前用溴苯醇内酯处理RPTC会降低11种磷脂的含量,使大多数PlsEtn磷脂减少60%,8种PlsCho磷脂中的4种减少40%,而与TBHP相比,PtdCho和PtdEtn受到的影响较小。这些数据表明,ER-iPLA2会被氧化剂失活,失活机制涉及ER-iPLA2巯基的氧化,并且ER-iPLA2的抑制会增加氧化剂诱导的RPTC磷脂损失。