MacLeod Annette
Wellcome Centre for Molecular Parasitology, Anderson College, University of Glasgow, UK.
Methods Mol Biol. 2004;270:187-202. doi: 10.1385/1-59259-793-9:187.
In recent years, a wide variety of biochemical and molecular typing systems have been employed in the study of parasite diversity aimed at investigating the level of genetic diversity and delineating the relationships among different species and subspecies. Parasite sequence-specific polymerase chain reaction (PCR)-based genotyping systems are among the most useful tools employed to date, because they can be applied to very small quantities of host-contaminated parasite material and, using repeated loci such as mini- and microsatellites, allow the identification and tracking of individual strains as well as the determination of allele and genotype frequencies in populations. Although minisatellites have been used very successfully to study parasite populations, in particular Trypanosoma brucei populations, there are some technical problems involved in the use of these markers. For example, minisatellite alleles tend to vary in a quasi-continuous fashion, making unambiguous allele identification difficult. The development of minisatellite variant repeat (MVR) mapping by the polymerase chain reaction (MVR-PCR) as a digital approach to DNA typing has overcome many of the drawbacks of minisatellite length analysis. The system assays the dispersion patterns of MVRs within minisatellite alleles, producing an easily interpretable code for each allele. This technique not only allows unequivocal allele identification but also reveals cladistic information that can be used to determine the possible genetic relationships among the different strains and subspecies. The MVR mapping technique has been applied successfully to minisatellites in the parasite Plasmodium falciparum to uniquely identify strains, and more extensively in Trypansoma brucei, where it was used to determine population structure and to examine the relationships among T. brucei subspecies, providing evidence for multiple origins of human infectively. In this chapter, the methods for genotyping of T. brucei parasites using both minisatellite allele length and MVR mapping are described in full and can be easily adapted to apply to mini-satellites in other parasites.
近年来,为了研究寄生虫的多样性,旨在调查遗传多样性水平并描绘不同物种和亚种之间的关系,人们采用了各种各样的生化和分子分型系统。基于寄生虫序列特异性聚合酶链反应(PCR)的基因分型系统是迄今为止最有用的工具之一,因为它们可以应用于极少量受宿主污染的寄生虫材料,并且利用诸如小卫星和微卫星等重复位点,能够识别和追踪单个菌株,还能确定群体中的等位基因和基因型频率。尽管小卫星已非常成功地用于研究寄生虫群体,尤其是布氏锥虫群体,但使用这些标记存在一些技术问题。例如,小卫星等位基因往往以准连续的方式变化,这使得明确的等位基因识别变得困难。通过聚合酶链反应(MVR-PCR)开发的小卫星变异重复(MVR)图谱作为一种DNA分型的数字化方法,克服了小卫星长度分析的许多缺点。该系统检测小卫星等位基因内MVR的分散模式,为每个等位基因生成一个易于解释的编码。这项技术不仅能明确识别等位基因,还能揭示分支信息,可用于确定不同菌株和亚种之间可能的遗传关系。MVR图谱技术已成功应用于恶性疟原虫寄生虫中的小卫星,以独特地识别菌株,并且在布氏锥虫中应用更为广泛,在布氏锥虫中它被用于确定群体结构并研究布氏锥虫亚种之间的关系,为人类感染的多种起源提供了证据。在本章中,将详细描述使用小卫星等位基因长度和MVR图谱对布氏锥虫寄生虫进行基因分型的方法,并且这些方法可以很容易地适用于其他寄生虫中的小卫星。