Vaclavikova Radka, Soucek Pavel, Svobodova Lenka, Anzenbacher Pavel, Simek Petr, Guengerich F Peter, Gut Ivan
National Institute of Public Health, Srobárova 48, 100 42 Prague 10, Czech Republic.
Drug Metab Dispos. 2004 Jun;32(6):666-74. doi: 10.1124/dmd.32.6.666.
We investigated cytochrome P450 (P450)-catalyzed metabolism of the important cancer drugs paclitaxel and docetaxel in rat, pig, minipig, and human liver microsomes and cDNA-expressed P450 enzymes. In rat microsomes, paclitaxel was metabolized mainly to C3'-hydroxypaclitaxel (C3'-OHP) and to a lesser extent to C2-hydroxypaclitaxel (C2-OHP), di-hydroxypaclitaxel (di-OHP), and another unknown monohydroxylated paclitaxel. In pig and minipig microsomes, this unknown hydroxypaclitaxel was the main metabolite, whereas C3'-OHP was a minor product. In minipigs, C2-OHP was the next minor product. In human liver microsomes, 6 alpha-hydroxypaclitaxel (6 alpha-OHP) was the main metabolite, followed by C3'-OHP and C2-OHP. Among different cDNA-expressed human P450 enzymes (CYP1A2, 1B1, 2A6, 2C9, 2E1, and 3A4), only CYP3A4 enzyme formed C3'-OHP and C2-OHP. Docetaxel was metabolized in pig, minipig, rat, and human liver microsomes mainly to hydroxydocetaxel (OHDTX), whereas CYP3A-induced rat microsomes produced primarily diastereomeric hydroxyoxazolidinones. Human liver microsomes from 10 different individuals formed OHDTX at different rates correlated with CYP3A4 content. Troleandomycin as a selective inhibitor of CYP3A inhibited the formation of C3'-OHP, C2-OHP, and di-OHP, as well as the unknown OHP produced in rat, minipig, and pig microsomes. In human liver microsomes, troleandomycin inhibited C3'-OHP and C2-OHP formation, and a suitable inhibitor of human CYP2C8, fisetin, strongly inhibited the formation of 6 alpha-OHP, known to be catalyzed by human CYP2C8. In conclusion, the metabolism of docetaxel is the same in all four species, but metabolism of paclitaxel is different, and 6 alpha-OHP remains a uniquely human metabolite. Pigs and minipigs compared with each other formed the same metabolites of paclitaxel.
我们研究了细胞色素P450(P450)催化的重要抗癌药物紫杉醇和多西他赛在大鼠、猪、小型猪及人肝微粒体和cDNA表达的P450酶中的代谢情况。在大鼠微粒体中,紫杉醇主要代谢为3'-羟基紫杉醇(C3'-OHP),其次是2-羟基紫杉醇(C2-OHP)、二羟基紫杉醇(di-OHP)以及另一种未知的单羟基化紫杉醇。在猪和小型猪微粒体中,这种未知的羟基紫杉醇是主要代谢产物,而C3'-OHP是次要产物。在小型猪中,C2-OHP是第二小的产物。在人肝微粒体中,6α-羟基紫杉醇(6α-OHP)是主要代谢产物,其次是C3'-OHP和C2-OHP。在不同的cDNA表达的人P450酶(CYP1A2、1B1、2A6、2C9、2E1和3A4)中,只有CYP3A4酶能形成C3'-OHP和C2-OHP。多西他赛在猪、小型猪、大鼠和人肝微粒体中主要代谢为羟基多西他赛(OHDTX),而CYP3A诱导的大鼠微粒体主要产生非对映体羟基恶唑烷酮。来自10个不同个体的人肝微粒体以不同速率形成OHDTX,这与CYP3A4含量相关。三乙酰竹桃霉素作为CYP3A的选择性抑制剂,抑制了大鼠、小型猪和猪微粒体中C3'-OHP、C2-OHP和di-OHP以及未知OHP的形成。在人肝微粒体中,三乙酰竹桃霉素抑制C3'-OHP和C2-OHP的形成,而人CYP2C8的合适抑制剂杨梅素强烈抑制已知由人CYP2C8催化形成的6α-OHP的形成。总之,多西他赛在所有四个物种中的代谢相同,但紫杉醇的代谢不同,且6α-OHP仍然是人类特有的代谢产物。猪和小型猪彼此相比,形成相同的紫杉醇代谢产物。