Martinez Raul E, Pedersen Karsten, Ferris F Grant
Microbial Geochemistry Laboratory, Department of Geology, University of Toronto, Toronto, Ontario M5S 3B1, Canada.
J Colloid Interface Sci. 2004 Jul 1;275(1):82-9. doi: 10.1016/j.jcis.2004.02.018.
This study quantifies the metal sorption characteristics of subterranean bacteriogenic iron oxides (BIOS) and their organic phases (intermixed intact and fragmented bacteria). A Cd2+ ion-selective electrode was used to generate high-resolution metal sorption data as a function of increasing pH. A multisite Langmuir model, along with a linear programming regression method (LPM), was applied to fit experimental data. This approach found two discrete Cd2+ binding sites for the BIOS with average -log10 equilibrium constants (pK(S,j)) of 1.06 +/- 0.19 and 2.24 +/- 0.28. Three discrete sites were obtained for the bacterial fraction, with pK(S,j) values of -0.05 +/- 0.12, 1.18 +/- 0.02, and 3.81 +/- 0.16. This indicated that the BIOS surface had a lower affinity for Cd2+ than that of the bacteria. pK(S,j) values for the BIOS were similar to those reported for pure iron oxide phases, while the organic fraction pK(S,j) spectrum was consistent with previous spectra for intact bacteria. Individual binding site densities of 0.04 +/- 0.01 and 0.05 +/- 0.02 and 0.29 +/- 0.05, 0.11 +/- 0.01, and 0.09 +/- 0.02 micromol/mg of BIOS corresponded to the iron oxide mixture and bacteria fraction, respectively. These values indicated high concentrations of strong affinity Cd2+ complexing groups on the bacterial surface. Comparison of total site densities of 0.08 +/- 0.02 and 0.48 +/- 0.06 micromol/mg of BIOS for the mixture and the bacterial phase, respectively, suggested a nonadditive character for the BIOS surface reactivity. This was emphasized by a higher affinity for Cd2+, as well as an increase in total site concentration observed for the bacterial phase. LPM was able to distinguish between the BIOS mixture and its organic fraction Cd2+ complexation characteristics. This approach is therefore a useful tool for the study of natural sorbent materials controlling metal partitioning in contaminated and pristine environments.
本研究对地下生源性铁氧化物(BIOS)及其有机相(完整和破碎细菌的混合物)的金属吸附特性进行了量化。使用镉离子选择性电极生成高分辨率的金属吸附数据,该数据是pH值增加的函数。采用多位点朗缪尔模型以及线性规划回归方法(LPM)来拟合实验数据。该方法发现BIOS有两个离散的镉离子结合位点,平均负对数平衡常数(pK(S,j))分别为1.06±0.19和2. .24±0.28。细菌部分有三个离散位点,pK(S,j)值分别为-0.05±0.12、1.18±0.02和3.81±0.16。这表明BIOS表面对镉离子的亲和力低于细菌表面。BIOS的pK(S,j)值与报道的纯铁氧化物相的值相似,而有机部分的pK(S,j)谱与完整细菌先前的谱一致。BIOS的铁氧化物混合物和细菌部分的单个结合位点密度分别为0.04±0.01和0.05±0.02以及0.29±0.05、0.11±0.01和0.09±0.02微摩尔/毫克。这些值表明细菌表面存在高浓度的强亲和力镉离子络合基团。混合物和细菌相的BIOS总位点密度分别为0.08±0.02和0.48±0.06微摩尔/毫克,比较结果表明BIOS表面反应性具有非加和性。细菌相对镉离子的更高亲和力以及总位点浓度的增加强调了这一点。LPM能够区分BIOS混合物及其有机部分的镉离子络合特性。因此,该方法是研究在污染和原始环境中控制金属分配的天然吸附剂材料的有用工具。