Suppr超能文献

蛋白质转运酶核心组分SecY的跨膜区域3和4的突变分析。

Mutational analysis of transmembrane regions 3 and 4 of SecY, a central component of protein translocase.

作者信息

Mori Hiroyuki, Shimokawa Naomi, Satoh Yasunari, Ito Koreaki

机构信息

Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.

出版信息

J Bacteriol. 2004 Jun;186(12):3960-9. doi: 10.1128/JB.186.12.3960-3969.2004.

Abstract

The SecYEG heterotrimeric membrane protein complex functions as a channel for protein translocation across the Escherichia coli cytoplasmic membrane. SecY is the central subunit of the SecYEG complex and contains 10 transmembrane segments (TM1 to TM10). Previous mutation studies suggested that TM3 and TM4 are particularly important for SecY function. To further characterize TM3 and TM4, we introduced a series of cysteine-scanning mutations into these segments. With one exception (an unstable product), all the mutant proteins complemented the cold-sensitive growth defect of the secY39 mutant. A combination of this secY mutation and the secG deletion resulted in synthetic lethality, and the TM3 and TM4 SecY cysteine substitution mutations were examined for their ability to complement this lethality. Although they were all positive for complementation, some of the complemented cells exhibited significant retardation of protein export. The substitution-sensitive residues in TM3 can be aligned to one side of the alpha-helix, and those in TM4 revealed a tendency for residues closer to the cytosolic side of the membrane to be more severely affected. Disulfide cross-linking experiments identified a specific contact point for TM3 and SecG TM2 as well as for TM4 and SecG TM1. Thus, although TM3 and TM4 do not contain any single residue that is absolutely required, they include functionally important helix surfaces and specific contact points with SecG. These results are discussed in light of the structural information available for the SecY complex.

摘要

SecYEG异源三聚体膜蛋白复合物作为蛋白质跨大肠杆菌细胞质膜转运的通道发挥作用。SecY是SecYEG复合物的中心亚基,包含10个跨膜片段(TM1至TM10)。先前的突变研究表明,TM3和TM4对SecY功能尤为重要。为了进一步表征TM3和TM4,我们在这些片段中引入了一系列半胱氨酸扫描突变。除了一个例外(一个不稳定的产物),所有突变蛋白都弥补了secY39突变体的冷敏感生长缺陷。这种secY突变与secG缺失的组合导致合成致死性,我们检测了TM3和TM4的SecY半胱氨酸替代突变弥补这种致死性的能力。尽管它们在互补方面都是阳性的,但一些互补细胞表现出明显的蛋白质输出延迟。TM3中对替代敏感的残基可以排列在α螺旋的一侧,TM4中的残基显示出靠近膜胞质侧的残基受影响更严重的趋势。二硫键交联实验确定了TM3与SecG TM2以及TM4与SecG TM1的特定接触点。因此,尽管TM3和TM4不包含任何绝对必需的单个残基,但它们包括功能上重要的螺旋表面和与SecG的特定接触点。根据SecY复合物可用的结构信息对这些结果进行了讨论。

相似文献

1
Mutational analysis of transmembrane regions 3 and 4 of SecY, a central component of protein translocase.
J Bacteriol. 2004 Jun;186(12):3960-9. doi: 10.1128/JB.186.12.3960-3969.2004.
2
Nearest neighbor analysis of the SecYEG complex. 1. Identification of a SecY-SecG interface.
Biochemistry. 2003 Jun 24;42(24):7434-41. doi: 10.1021/bi034331a.
4
In vivo cross-linking of the SecA and SecY subunits of the Escherichia coli preprotein translocase.
J Bacteriol. 1997 Sep;179(18):5699-704. doi: 10.1128/jb.179.18.5699-5704.1997.
5
SecYEG and SecA are the stoichiometric components of preprotein translocase.
J Biol Chem. 1995 Aug 25;270(34):20106-11. doi: 10.1074/jbc.270.34.20106.
6
The oligomeric distribution of SecYEG is altered by SecA and translocation ligands.
J Mol Biol. 2005 Nov 25;354(2):258-71. doi: 10.1016/j.jmb.2005.09.058. Epub 2005 Oct 7.
7
A single amino acid substitution in SecY stabilizes the interaction with SecA.
J Biol Chem. 1999 Aug 20;274(34):23868-74. doi: 10.1074/jbc.274.34.23868.
8
Dynamic interaction of the sec translocon with the chaperone PpiD.
J Biol Chem. 2014 Aug 1;289(31):21706-15. doi: 10.1074/jbc.M114.577916. Epub 2014 Jun 20.
9
Evaluating the oligomeric state of SecYEG in preprotein translocase.
EMBO J. 2000 Aug 15;19(16):4393-401. doi: 10.1093/emboj/19.16.4393.

引用本文的文献

2
The bacterial Sec-translocase: structure and mechanism.
Philos Trans R Soc Lond B Biol Sci. 2012 Apr 19;367(1592):1016-28. doi: 10.1098/rstb.2011.0201.
3
Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility.
EMBO J. 2007 Aug 8;26(15):3509-20. doi: 10.1038/sj.emboj.7601799. Epub 2007 Jul 19.
4
SecY alterations that impair membrane protein folding and generate a membrane stress.
J Cell Biol. 2007 Jan 29;176(3):307-17. doi: 10.1083/jcb.200611121. Epub 2007 Jan 22.
6
Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-cross-linking.
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16159-64. doi: 10.1073/pnas.0606390103. Epub 2006 Oct 23.
7
Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon.
Biochim Biophys Acta. 2007 Jan;1768(1):5-12. doi: 10.1016/j.bbamem.2006.08.013. Epub 2006 Aug 30.

本文引用的文献

1
X-ray structure of a protein-conducting channel.
Nature. 2004 Jan 1;427(6969):36-44. doi: 10.1038/nature02218. Epub 2003 Dec 3.
3
Nearest neighbor analysis of the SecYEG complex. 1. Identification of a SecY-SecG interface.
Biochemistry. 2003 Jun 24;42(24):7434-41. doi: 10.1021/bi034331a.
4
Importance of transmembrane segments in Escherichia coli SecY.
Mol Genet Genomics. 2003 May;269(2):180-7. doi: 10.1007/s00438-003-0804-8. Epub 2003 Feb 11.
8
SecY-SecY and SecY-SecG contacts revealed by site-specific crosslinking.
FEBS Lett. 2002 Sep 11;527(1-3):159-65. doi: 10.1016/s0014-5793(02)03202-7.
9
Three-dimensional structure of the bacterial protein-translocation complex SecYEG.
Nature. 2002 Aug 8;418(6898):662-5. doi: 10.1038/nature00827.
10
The core of the bacterial translocase harbors a tilted transmembrane segment 3 of SecE.
J Biol Chem. 2002 Sep 27;277(39):36640-5. doi: 10.1074/jbc.M205713200. Epub 2002 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验