Suppr超能文献

利用支持向量机识别丝氨酸水解酶的催化三联体。

Identify catalytic triads of serine hydrolases by support vector machines.

作者信息

Cai Yu-dong, Zhou Guo-Ping, Jen Chin-Hung, Lin Shuo-Liang, Chou Kuo-Chen

机构信息

Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, China.

出版信息

J Theor Biol. 2004 Jun 21;228(4):551-7. doi: 10.1016/j.jtbi.2004.02.019.

Abstract

The core of an enzyme molecule is its active site from the viewpoints of both academic research and industrial application. To reveal the structural and functional mechanism of an enzyme, one needs to know its active site; to conduct structure-based drug design by regulating the function of an enzyme, one needs to know the active site and its microenvironment as well. Given the atomic coordinates of an enzyme molecule, how can we predict its active site? To tackle such a problem, a distance group approach was proposed and the support vector machine algorithm applied to predict the catalytic triad of serine hydrolase family. The success rate by jackknife test for the 139 serine hydrolases was 85%, implying that the method is quite promising and may become a useful tool in structural bioinformatics.

摘要

从学术研究和工业应用的角度来看,酶分子的核心是其活性位点。要揭示酶的结构和功能机制,需要了解其活性位点;要通过调节酶的功能进行基于结构的药物设计,也需要了解活性位点及其微环境。给定酶分子的原子坐标,我们如何预测其活性位点呢?为了解决这个问题,提出了一种距离基团方法,并应用支持向量机算法来预测丝氨酸水解酶家族的催化三联体。对139种丝氨酸水解酶进行留一法检验的成功率为85%,这意味着该方法很有前景,可能会成为结构生物信息学中的一个有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验