Tateno Hiroaki, Goldstein Irwin J
Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA.
Arch Biochem Biophys. 2004 Jul 1;427(1):101-9. doi: 10.1016/j.abb.2004.04.013.
The Galalpha1,3Galbeta1,4GlcNAc-specific lectin from the mushroom Marasmius oreades (MOA) contains a ricin B chain-like (QXW)(3) domain at its N-terminus that is composed of three identical subdomains (alpha, beta, and gamma) and a C-terminal domain of unknown function. Here, we investigate the structure-function relationship of MOA to define the number and location of its carbohydrate-binding sites. Based on the sequence alignment of MOA to the ricin B-chain lactose-binding sites, we systematically constructed mutants by site-directed mutagenesis. We have used precipitation and hemagglutination assay for the primary analyses, and surface plasmon resonance for the kinetic analysis. Among amino acid residues at the putative carbohydrate-binding sites, Gln(46) in the alpha subdomain and Trp(138) in the gamma subdomain have been identified to be important amino acid residues directly or indirectly involved in carbohydrate recognition. By surface plasmon resonance, Q46A and W138A were 2.4- and 4.3-fold less active than that of the wild-type MOA (K(a) = 2 x 10(7)), respectively. A double-site mutant (Q46A/W138A) had activity similar to W138A. The C-terminal deletion mutant MOADeltaC showed hemagglutination and precipitation activity, although its binding constant was 12.5-fold less active (K(a) = 1.6 x 10(6)) than that of the wild-type MOA. A C-terminal deletion mutant with mutations at both Gln(46) and Trp(138) (MOADeltaC-Q46A/W138A) was 12,500-fold less active (K(a) = 1.6 x 10(3)) than that of the wild-type MOA. On the basis of this observation, we conclude that both alpha and gamma subdomains are most probably involved in carbohydrate binding, but the beta subdomain appears to be inactive.
来自小皮伞(Marasmius oreades)的Galα1,3Galβ1,4GlcNAc特异性凝集素(MOA)在其N端含有一个蓖麻毒素B链样(QXW)(3)结构域,该结构域由三个相同的亚结构域(α、β和γ)组成,以及一个功能未知的C端结构域。在此,我们研究MOA的结构-功能关系,以确定其碳水化合物结合位点的数量和位置。基于MOA与蓖麻毒素B链乳糖结合位点的序列比对,我们通过定点诱变系统构建了突变体。我们使用沉淀和血凝试验进行初步分析,并使用表面等离子体共振进行动力学分析。在假定的碳水化合物结合位点的氨基酸残基中,α亚结构域中的Gln(46)和γ亚结构域中的Trp(138)已被确定为直接或间接参与碳水化合物识别的重要氨基酸残基。通过表面等离子体共振,Q46A和W138A的活性分别比野生型MOA(K(a)=2×10(7))低2.4倍和4.3倍。双位点突变体(Q46A/W138A)的活性与W138A相似。C端缺失突变体MOADeltaC表现出血凝和沉淀活性,尽管其结合常数比野生型MOA低12.5倍(K(a)=1.6×10(6))。一个在Gln(46)和Trp(138)处都有突变的C端缺失突变体(MOADeltaC-Q46A/W138A)的活性比野生型MOA低12500倍(K(a)=1.6×10(3))。基于这一观察结果,我们得出结论,α和γ亚结构域很可能都参与碳水化合物结合,但β亚结构域似乎无活性。