Nieland Thomas J F, Feng Yan, Brown Jing Xu, Chuang Tuan Daniel, Buckett Peter D, Wang Jin, Xie Xiao-Song, McGraw Timothy E, Kirchhausen Tomas, Wessling-Resnick Marianne
Harvard Medical School, Department of Cell Biology and The CBR Institute for Biomedical Research, 200 Longwood Avenue, Boston MA, 02115, USA.
Traffic. 2004 Jul;5(7):478-92. doi: 10.1111/j.1398-9219.2004.00193.x.
Chemical genetics seeks to identify small molecules that afford functional dissection of cell biological pathways. Previous screens for small molecule inhibitors of exocytic membrane traffic yielded the identification and characterization of several compounds that block traffic from the Golgi to the cell surface as well as transport from the endoplasmic reticulum to the Golgi network [Feng et al. Proc Natl Acad Sci USA 2003;100:6469-6474; Yarrow et al. Comb Chem High Throughput Screen 2003;6:279-286; Feng et al. EMBO Reports 2004: in press]. Here, we screened these inhibitors for potential effects on endocytic membrane traffic. Two structurally related sulfonamides were found to be potent and reversible inhibitors of transferrin-mediated iron uptake. These inhibitors do not block endoplasmic reticulum-to-Golgi transport, but do disrupt Golgi-to-cell surface traffic. The compounds are members of a novel class of sulfonamides that elevate endosomal and lysosomal pH, down-regulate cell surface receptors, and impair recycling of internalized transferrin receptors to the plasma membrane. In vitro experiments revealed that the sulfonamides directly inhibit adenosine triphosphate (ATP) hydrolysis by the V-ATPase and that they also possess a potent proton ionophore activity. While maintenance of organellar pH is known to be a critical factor in both endocytosis and exocytosis, the precise role of acidification, beyond the uncoupling of ligands from their receptors, remains largely unknown. Identification of this novel class of sulfonamide inhibitors provides new chemical tools to better understand the function of organelle pH in membrane traffic and the activity of V-ATPases in particular.
化学遗传学旨在鉴定能够对细胞生物学途径进行功能剖析的小分子。先前针对胞吐膜运输的小分子抑制剂进行的筛选,鉴定并表征了几种阻断从高尔基体到细胞表面运输以及从内质网到高尔基体网络运输的化合物[Feng等人,《美国国家科学院院刊》2003年;100:6469 - 6474;Yarrow等人,《组合化学与高通量筛选》2003年;6:279 - 286;Feng等人,《欧洲分子生物学组织报告》2004年:即将发表]。在此,我们筛选了这些抑制剂对胞吞膜运输的潜在影响。发现两种结构相关的磺酰胺是转铁蛋白介导的铁摄取的强效可逆抑制剂。这些抑制剂不会阻断内质网到高尔基体的运输,但会破坏高尔基体到细胞表面的运输。这些化合物是一类新型磺酰胺的成员,这类磺酰胺会升高内体和溶酶体的pH值,下调细胞表面受体,并损害内化的转铁蛋白受体向质膜的再循环。体外实验表明,这些磺酰胺直接抑制V - ATP酶水解三磷酸腺苷(ATP),并且它们还具有强大的质子离子载体活性。虽然已知细胞器pH值的维持是内吞作用和外排作用的关键因素,但除了使配体与其受体解偶联之外,酸化的确切作用在很大程度上仍然未知。鉴定这类新型磺酰胺抑制剂提供了新的化学工具,以更好地理解细胞器pH值在膜运输中的功能,特别是V - ATP酶的活性。