Jones Dean P, Go Young-Mi, Anderson Corinna L, Ziegler Thomas R, Kinkade Joseph M, Kirlin Ward G
Department of Medicine, 4131 Rollins Research Center, Emory University, Atlanta, GA 30322, USA.
FASEB J. 2004 Aug;18(11):1246-8. doi: 10.1096/fj.03-0971fje. Epub 2004 Jun 4.
Redox mechanisms function in control of gene expression, cell proliferation, and apoptosis, but the circuitry for redox signaling remains unclear. Cysteine and methionine are the only amino acids in proteins that undergo reversible oxidation/reduction under biologic conditions and, as such, provide a means for control of protein activity, protein-protein interaction, protein trafficking, and protein-DNA interaction. Hydrogen peroxide and other reactive oxygen species (ROS) provide a mechanism to oxidize signaling proteins. However, oxidation of sulfur-containing side chains of cysteine and methionine by ROS can result in oxidation states of sulfur (e.g., sulfinate, sulfonate, sulfone) that are not reducible under biologic conditions. Thus, mechanisms for oxidation that protect against over-oxidation of these susceptible residues and prevent irreversible loss of activity would be advantageous. The present study shows that the steady-state redox potential of the cysteine/cystine couple (Eh = -145 mV) in cells is sufficiently oxidized (>90 mV) relative to the GSH/GSSG (-250 mV) and thioredoxin (Trx1, -280 mV) redox couples for the cysteine/cystine couple to function as an oxidant in redox switching. Consequently, the cysteine/cystine couple provides a means to oxidize proteins without direct involvement of more potent oxidants. A circuitry model incorporating cysteine as a redox node, along with Trx1 and GSH, reveals how selective interactions between the different thiol/disulfide couples and reactive protein thiols could differentially regulate metabolic functions. Moreover, inclusion of cysteine/cystine as a signaling node distinct from GSH and Trx1 significantly expands the redox range over which protein thiol/disulfide couples may operate to control physiologically relevant processes.
氧化还原机制在基因表达、细胞增殖和细胞凋亡的控制中发挥作用,但氧化还原信号传导的通路仍不清楚。半胱氨酸和蛋氨酸是蛋白质中仅有的在生物学条件下可进行可逆氧化/还原的氨基酸,因此为控制蛋白质活性、蛋白质-蛋白质相互作用、蛋白质运输和蛋白质-DNA相互作用提供了一种方式。过氧化氢和其他活性氧(ROS)提供了一种氧化信号蛋白的机制。然而,ROS对半胱氨酸和蛋氨酸含硫侧链的氧化可导致硫的氧化态(如亚磺酸盐、磺酸盐、砜)在生物学条件下不可还原。因此,防止这些敏感残基过度氧化并防止不可逆活性丧失的氧化机制将是有利的。本研究表明,相对于谷胱甘肽/氧化型谷胱甘肽(GSH/GSSG,-250 mV)和硫氧还蛋白(Trx1,-280 mV)氧化还原对,细胞中半胱氨酸/胱氨酸对的稳态氧化还原电位(Eh = -145 mV)被充分氧化(>90 mV),使得半胱氨酸/胱氨酸对在氧化还原转换中可作为氧化剂发挥作用。因此,半胱氨酸/胱氨酸对提供了一种在不直接涉及更强氧化剂的情况下氧化蛋白质的方式。一个将半胱氨酸作为氧化还原节点,连同Trx1和GSH纳入的通路模型揭示了不同硫醇/二硫键对与反应性蛋白质硫醇之间的选择性相互作用如何差异调节代谢功能。此外,将半胱氨酸/胱氨酸作为一个不同于GSH和Trx1的信号节点纳入,显著扩展了蛋白质硫醇/二硫键对可能发挥作用以控制生理相关过程的氧化还原范围。