Rose Robert B, Pullen Kristi E, Bayle J Henri, Crabtree Gerald R, Alber Tom
Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206, USA.
Biochemistry. 2004 Jun 15;43(23):7345-55. doi: 10.1021/bi049620t.
An inherited form of diabetes, maturity-onset diabetes of the young type 3 (MODY3), results from mutations in the transcriptional activator, hepatocyte nuclear factor-1alpha (HNF1alpha). Transcription by HNF1alpha is stimulated by the bifunctional coactivator DCoH (dimerization cofactor of HNF1). Strikingly, an HNF1alpha deletion in mice causes more severe phenotypes than a DCoH deletion. It has been hypothesized that a DCoH homolog, DCoH2, partially complements the DCoH deletion. To test this idea, we determined the biochemical properties and the 1.6-A-resolution crystal structure of DCoH2. Like DCoH, DCoH2 forms a tetramer, displays pterin-4alpha-carbinolamine dehydratase activity, and binds HNF1alpha in vivo and in vitro. DCoH and DCoH2 adopt identical folds with structural differences confined largely to the protein surfaces and the tetramer interface. In contrast to the hyperstable DCoH tetramer, DCoH2 readily disproportionates and forms a 2:2 complex with HNF1 in vitro. Phylogenetic analysis reveals six major subfamilies of DCoH proteins, including unique DCoH and DCoH2 branches in metazoans. These results suggest distinct roles for DCoH and DCoH2. Differences in conserved surface residues could mediate binding to different effectors. We propose that HNF1alpha binding kinetics may distinguish regulation by DCoH2, under thermodynamic control, from regulation by DCoH, under kinetic control.
一种遗传性糖尿病,即青年发病的成年型糖尿病3型(MODY3),是由转录激活因子肝细胞核因子1α(HNF1α)的突变引起的。HNF1α的转录受到双功能共激活因子DCoH(HNF1的二聚化辅因子)的刺激。引人注目的是,小鼠中的HNF1α缺失比DCoH缺失导致更严重的表型。据推测,一种DCoH同源物DCoH2可部分弥补DCoH的缺失。为了验证这一想法,我们确定了DCoH2的生化特性和1.6埃分辨率的晶体结构。与DCoH一样,DCoH2形成四聚体,具有蝶呤-4α-甲醇胺脱水酶活性,并在体内和体外与HNF1α结合。DCoH和DCoH2具有相同的折叠结构,结构差异主要局限于蛋白质表面和四聚体界面。与超稳定的DCoH四聚体不同,DCoH2在体外很容易发生歧化反应,并与HNF1形成2:2复合物。系统发育分析揭示了DCoH蛋白的六个主要亚家族,包括后生动物中独特的DCoH和DCoH2分支。这些结果表明DCoH和DCoH2具有不同的作用。保守表面残基的差异可能介导与不同效应器的结合。我们提出,HNF1α结合动力学可能区分在热力学控制下由DCoH2介导的调节和在动力学控制下由DCoH介导的调节。