Suppr超能文献

用于预测N-芳基邻氨基苯甲酸抗炎活性的拓扑模型

Topological models for prediction of anti-inflammatory activity of N-arylanthranilic acids.

作者信息

Bajaj Sanjay, Sambi S S, Madan A K

机构信息

School of Chemical Technology, GGS Indraprastha University, Delhi 110 006, India.

出版信息

Bioorg Med Chem. 2004 Jul 1;12(13):3695-701. doi: 10.1016/j.bmc.2004.04.012.

Abstract

Relationship of anti-inflammatory activity of N-arylanthranilic acids with distance based Wiener's index, adjacency based Zagreb indices M1 and M2, and distance-cum-adjacency based eccentric connectivity index (ECI) was investigated. A dataset comprising of 112 N-arylanthranilic acids was selected. The values of all the four indices for each of the 112 compounds were calculated using an in-house computer program. The dataset was divided randomly into training and test sets. The data was analyzed and suitable models were developed after identification the active ranges in the training set. Subsequently, a biological activity was assigned to each of the compound involved in the test set using these models, which was then compared with the reported anti-inflammatory activity. High accuracy of prediction ranging from 83% to 90% was observed using models based upon topological indices.

摘要

研究了N-芳基邻氨基苯甲酸的抗炎活性与基于距离的维纳指数、基于邻接的 Zagreb 指数M1和M2以及基于距离-邻接的偏心连接性指数(ECI)之间的关系。选择了一个由112种N-芳基邻氨基苯甲酸组成的数据集。使用内部计算机程序计算了112种化合物中每一种的所有四个指数的值。将数据集随机分为训练集和测试集。在确定训练集中的活性范围后,对数据进行分析并建立合适的模型。随后,使用这些模型为测试集中涉及的每种化合物赋予生物活性,然后将其与报道的抗炎活性进行比较。使用基于拓扑指数的模型观察到预测准确率高达83%至90%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验