Haselhorst Thomas, Wilson Jennifer C, Liakatos Angela, Kiefel Milton J, Dyason Jeffrey C, von Itzstein Mark
Institute for Glycomics, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre, Queensland, 9726, Australia.
Glycobiology. 2004 Oct;14(10):895-907. doi: 10.1093/glycob/cwh108. Epub 2004 Jun 9.
Nuclear magnetic resonance (NMR) spectroscopy was used to investigate the transfer of sialic acid from a range of sialic acid donor compounds to acceptor molecules, catalyzed by Trypanosoma cruzi trans-sialidase (TcTS). We demonstrate here that NMR spectroscopy is a powerful tool to monitor the trans-sialidase enzyme reaction for a variety of donor and acceptor molecules. The hydrolysis or transfer reactions that are catalyzed by TcTS were also investigated using a range of N-acetylneuraminosyl-based donor substrates and asialo acceptor molecules. These studies showed that the synthetic N-acetylneuraminosyl donor 4-methylumbelliferyl alpha-d-N-acetylneuraminide (MUN) is hydrolyzed by the enzyme approximately 3-5 times faster than either the disaccharide Neu5Acalpha(2,3)Galbeta1Me or the trisaccharide Neu5Acalpha(2,3)Lacbeta1Me. In the transfer reaction, we show that Neu5Acalpha(2,3)Lacbeta1Me is the most favorable substrate for TcTS and is a better substrate than the naturally-occurring N-acetylneuraminosyl donor alpha1-acid glycoprotein. In the case of MUN as the donor molecule, the transfer of Neu5Ac to different acceptors is significantly slower than when other N-acetylneuraminosyl donors are used. We hypothesize that when MUN is bound by the enzyme, the orientation and steric bulk of the umbelliferyl aglycon moiety may restrict the access for the correct positioning of an acceptor molecule. AutoDock studies support our hypothesis and show that the umbelliferyl aglycon moiety undergoes a strong pi-stacking interaction with Trp-312. The binding properties of TcTS towards acceptor (lactose) and donor substrate (Neu5Ac) molecules have also been investigated using saturation transfer difference (STD) NMR experiments. These experiments, taken together with other published data, have clearly demonstrated that lactose in the absence of other coligands does not bind to the TcTS active site or other binding domains. However, in the presence of the sialic acid donor, lactose (an asialo acceptor) was observed by NMR spectroscopy to interact with the enzyme's active site. The association of the asialo acceptor with the active site is an absolute requirement for the transfer reaction to proceed.
利用核磁共振(NMR)光谱研究了克氏锥虫转唾液酸酶(TcTS)催化一系列唾液酸供体化合物中的唾液酸向受体分子的转移。我们在此证明,NMR光谱是监测各种供体和受体分子的转唾液酸酶反应的有力工具。还使用一系列基于N-乙酰神经氨酸的供体底物和去唾液酸受体分子研究了TcTS催化的水解或转移反应。这些研究表明,合成的N-乙酰神经氨酸供体4-甲基伞形酮基α-d-N-乙酰神经氨酸(MUN)被该酶水解的速度比二糖Neu5Acalpha(2,3)Galbeta1Me或三糖Neu5Acalpha(2,3)Lacbeta1Me快约3至5倍。在转移反应中,我们表明Neu5Acalpha(2,3)Lacbeta1Me是TcTS最有利的底物,并且比天然存在的N-乙酰神经氨酸供体α1-酸性糖蛋白是更好的底物。在以MUN作为供体分子的情况下,Neu5Ac向不同受体的转移明显比使用其他N-乙酰神经氨酸供体时慢。我们推测,当MUN与该酶结合时,伞形酮苷元部分的取向和空间体积可能会限制受体分子正确定位的通道。自动对接研究支持了我们的假设,并表明伞形酮苷元部分与Trp-312发生了强烈的π-堆积相互作用。还使用饱和转移差(STD)NMR实验研究了TcTS对受体(乳糖)和供体底物(Neu5Ac)分子的结合特性。这些实验与其他已发表的数据一起清楚地表明,在没有其他共配体的情况下,乳糖不会与TcTS活性位点或其他结合域结合。然而,在存在唾液酸供体的情况下,通过NMR光谱观察到乳糖(去唾液酸受体)与酶的活性位点相互作用。去唾液酸受体与活性位点的结合是转移反应进行的绝对必要条件。