Sharma Chandan, Pradeep Anamika, Wong Lucas, Rana Ajay, Rana Basabi
Division of Molecular Cardiology, The Texas A&M University System Health Science Center, College of Medicine, Temple, TX 76504, USA.
J Biol Chem. 2004 Aug 20;279(34):35583-94. doi: 10.1074/jbc.M403143200. Epub 2004 Jun 9.
The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) belongs to the family of nuclear hormone receptors and consists of two isotypes, PPARgamma1 and PPARgamma2. Our earlier studies have shown that troglitazone (TZD)-mediated activation of PPARgamma2 in hepatocytes inhibits growth and attenuates cyclin D1 transcription via modulating CREB levels. Because this process of growth inhibition was also associated with an inhibition of beta-catenin expression at a post-translational level, our aim was to elucidate the mechanism involved. beta-Catenin is a multifunctional protein, which can regulate cell-cell adhesion by interacting with E-cadherin and other cellular processes via regulating target gene transcription in association with TCF/LEF transcription factors. Two adenomatous polyposis coli (APC)-dependent proteasomal degradation pathways, one involving glycogen synthase kinase 3beta (GSK3beta) and the other involving p53-Siah-1, degrade excess beta-catenin in normal cells. Our immunofluorescence and Western blot studies indicated a TZD-dependent decrease in cytoplasmic and membrane-bound beta-catenin, indicating no increase in its membrane translocation. This was associated with a reduction in E-cadherin expression. PPARgamma2 activation inhibited GSK3beta kinase activity, and pharmacological inhibition of GSK3beta activity was unable to restore beta-catenin expression following PPARgamma2 activation. Additionally, this beta-catenin degradation pathway was operative in cells, with inactivating mutations of both APC and p53. Inhibition of the proteasomal pathway inhibited PPARgamma2-mediated degradation of beta-catenin, and incubation with TZD increased ubiquitination of beta-catenin. We conclude that PPARgamma2-mediated suppression of beta-catenin levels involves a novel APC/GSK3beta/p53-independent ubiquitination-mediated proteasomal degradation pathway.
转录因子过氧化物酶体增殖物激活受体γ(PPARγ)属于核激素受体家族,由两种亚型PPARγ1和PPARγ2组成。我们早期的研究表明,曲格列酮(TZD)介导的肝细胞中PPARγ2的激活通过调节CREB水平抑制生长并减弱细胞周期蛋白D1转录。由于这种生长抑制过程也与翻译后水平上β-连环蛋白表达的抑制有关,我们的目的是阐明其中涉及的机制。β-连环蛋白是一种多功能蛋白,它可以通过与E-钙黏蛋白相互作用来调节细胞间黏附,并通过与TCF/LEF转录因子联合调节靶基因转录来参与其他细胞过程。两条依赖腺瘤性息肉病大肠杆菌(APC)的蛋白酶体降解途径,一条涉及糖原合酶激酶3β(GSK3β),另一条涉及p53-Siah-1,可在正常细胞中降解过量的β-连环蛋白。我们的免疫荧光和蛋白质印迹研究表明,TZD依赖性地降低了细胞质和膜结合的β-连环蛋白,表明其膜转位没有增加。这与E-钙黏蛋白表达的降低有关。PPARγ2激活抑制了GSK3β激酶活性,并且在PPARγ2激活后,对GSK3β活性的药理学抑制无法恢复β-连环蛋白的表达。此外,这种β-连环蛋白降解途径在同时具有APC和p53失活突变的细胞中也起作用。蛋白酶体途径的抑制抑制了PPARγ2介导的β-连环蛋白降解,并且用TZD孵育增加了β-连环蛋白的泛素化。我们得出结论,PPARγ2介导的β-连环蛋白水平的抑制涉及一种新发现的不依赖APC/GSK3β/p53的泛素化介导的蛋白酶体降解途径。