Suppr超能文献

蛋白质对随机氨基酸变化的耐受性。

Protein tolerance to random amino acid change.

作者信息

Guo Haiwei H, Choe Juno, Loeb Lawrence A

机构信息

Joseph Gottstein Memorial Cancer Laboratory, Department of Pathology, University of Washington School of Medicine, Seattle, 98195-7705, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9205-10. doi: 10.1073/pnas.0403255101. Epub 2004 Jun 14.

Abstract

Mutagenesis of protein-encoding sequences occurs ubiquitously; it enables evolution, accumulates during aging, and is associated with disease. Many biotechnological methods exploit random mutations to evolve novel proteins. To quantitate protein tolerance to random change, it is vital to understand the probability that a random amino acid replacement will lead to a protein's functional inactivation. We define this probability as the "x factor." Here, we develop a broadly applicable approach to calculate x factors and demonstrate this method using the human DNA repair enzyme 3-methyladenine DNA glycosylase (AAG). Three gene-wide mutagenesis libraries were created, each with 10(5) diversity and averaging 2.2, 4.6, and 6.2 random amino acid changes per mutant. After determining the percentage of functional mutants in each library using high-stringency selection (>19,000-fold), the x factor was found to be 34% +/- 6%. Remarkably, reanalysis of data from studies of diverse proteins reveals similar inactivation probabilities. To delineate the nature of tolerated amino acid substitutions, we sequenced 244 surviving AAG mutants. The 920 tolerated substitutions were characterized by substitutability index and mapped onto the AAG primary, secondary, and known tertiary structures. Evolutionarily conserved residues show low substitutability indices. In AAG, beta strands are on average less substitutable than alpha helices; and surface loops that are not involved in DNA binding are the most substitutable. Our results are relevant to such diverse topics as applied molecular evolution, the rate of introduction of deleterious alleles into genomes in evolutionary history, and organisms' tolerance of mutational burden.

摘要

蛋白质编码序列的诱变普遍存在;它推动了进化,在衰老过程中不断累积,并且与疾病相关。许多生物技术方法利用随机突变来进化出新的蛋白质。为了量化蛋白质对随机变化的耐受性,了解随机氨基酸替换导致蛋白质功能失活的概率至关重要。我们将此概率定义为“x因子”。在此,我们开发了一种广泛适用的方法来计算x因子,并以人类DNA修复酶3-甲基腺嘌呤DNA糖基化酶(AAG)为例展示了该方法。构建了三个全基因诱变文库,每个文库具有10^5的多样性,每个突变体平均有2.2、4.6和6.2个随机氨基酸变化。在使用高严格度筛选(>19,000倍)确定每个文库中功能突变体的百分比后,发现x因子为34%±6%。值得注意的是,对来自多种蛋白质研究数据的重新分析揭示了相似的失活概率。为了描绘可耐受氨基酸替换的性质,我们对244个存活的AAG突变体进行了测序。920个可耐受的替换通过可替换性指数进行了表征,并映射到AAG的一级、二级和已知三级结构上。进化保守残基的可替换性指数较低。在AAG中,β链平均比α螺旋更不易被替换;而不参与DNA结合的表面环最易被替换。我们的结果与诸如应用分子进化、进化历史中有害等位基因引入基因组的速率以及生物体对突变负担的耐受性等不同主题相关。

相似文献

1
Protein tolerance to random amino acid change.
Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9205-10. doi: 10.1073/pnas.0403255101. Epub 2004 Jun 14.
2
Probing beta-lactamase structure and function using random replacement mutagenesis.
Proteins. 1992 Sep;14(1):29-44. doi: 10.1002/prot.340140106.
3
A statistical analysis of random mutagenesis methods used for directed protein evolution.
J Mol Biol. 2006 Jan 27;355(4):858-71. doi: 10.1016/j.jmb.2005.10.082. Epub 2005 Nov 17.
4
Lessons from diversity of directed evolution experiments by an analysis of 3,000 mutations.
Biotechnol Bioeng. 2014 Dec;111(12):2380-9. doi: 10.1002/bit.25302. Epub 2014 Jul 14.
5
Amino acid substitutions in random mutagenesis libraries: lessons from analyzing 3000 mutations.
Appl Microbiol Biotechnol. 2017 Apr;101(8):3177-3187. doi: 10.1007/s00253-016-8035-1. Epub 2017 Jan 3.
8
Predicting the tolerance of proteins to random amino acid substitution.
Biophys J. 2005 Dec;89(6):3714-20. doi: 10.1529/biophysj.105.062125. Epub 2005 Sep 8.
9
RNA mutagenesis yields highly diverse mRNA libraries for in vitro protein evolution.
BMC Biotechnol. 2007 Apr 11;7:18. doi: 10.1186/1472-6750-7-18.
10
Heterotachy and functional shift in protein evolution.
IUBMB Life. 2003 Apr-May;55(4-5):257-65. doi: 10.1080/1521654031000123330.

引用本文的文献

1
Rational protein engineering using an omni-directional multipoint mutagenesis generation pipeline.
iScience. 2025 Aug 5;28(9):113273. doi: 10.1016/j.isci.2025.113273. eCollection 2025 Sep 19.
2
Protein sequence evolution underlies interspecies incompatibility of a cell fate determinant.
bioRxiv. 2025 Aug 2:2025.08.02.668269. doi: 10.1101/2025.08.02.668269.
5
A narrow range of transcript-error rates across the Tree of Life.
Sci Adv. 2025 Jul 11;11(28):eadv9898. doi: 10.1126/sciadv.adv9898.
6
The hidden costs of imperfection: transcription errors in protein aggregation diseases.
Curr Opin Genet Dev. 2025 Aug;93:102350. doi: 10.1016/j.gde.2025.102350. Epub 2025 Apr 29.
8
Identification of two point mutations associated with inherited antithrombin deficiency.
Thromb J. 2024 Dec 3;22(1):107. doi: 10.1186/s12959-024-00677-6.
9
Transcript errors generate amyloid-like proteins in huwman cells.
Nat Commun. 2024 Oct 7;15(1):8676. doi: 10.1038/s41467-024-52886-2.
10
Enriching productive mutational paths accelerates enzyme evolution.
Nat Chem Biol. 2024 Dec;20(12):1662-1669. doi: 10.1038/s41589-024-01712-3. Epub 2024 Sep 11.

本文引用的文献

2
Multiple mutations and cancer.
Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):776-81. doi: 10.1073/pnas.0334858100. Epub 2003 Jan 27.
3
Evaluation of structural and evolutionary contributions to deleterious mutation prediction.
J Mol Biol. 2002 Sep 27;322(4):891-901. doi: 10.1016/s0022-2836(02)00813-6.
4
Distribution of mutations in human thymidylate synthase yielding resistance to 5-fluorodeoxyuridine.
J Biol Chem. 2002 Sep 27;277(39):36304-11. doi: 10.1074/jbc.M204956200. Epub 2002 Jul 29.
5
Mutations in human DNA polymerase eta motif II alter bypass of DNA lesions.
EMBO J. 2001 Dec 17;20(24):7303-12. doi: 10.1093/emboj/20.24.7303.
6
Predicting deleterious amino acid substitutions.
Genome Res. 2001 May;11(5):863-74. doi: 10.1101/gr.176601.
7
Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG.
Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13573-8. doi: 10.1073/pnas.97.25.13573.
8
DNA polymerase active site is highly mutable: evolutionary consequences.
Proc Natl Acad Sci U S A. 2000 May 9;97(10):5095-100. doi: 10.1073/pnas.97.10.5095.
9
Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli.
J Bacteriol. 1999 Nov;181(21):6763-71. doi: 10.1128/JB.181.21.6763-6771.1999.
10
3-methyladenine DNA glycosylases: structure, function, and biological importance.
Bioessays. 1999 Aug;21(8):668-76. doi: 10.1002/(SICI)1521-1878(199908)21:8<668::AID-BIES6>3.0.CO;2-D.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验