Sonveaux Pierre, Martinive Philippe, DeWever Julie, Batova Zuzana, Daneau Géraldine, Pelat Michel, Ghisdal Philippe, Grégoire Vincent, Dessy Chantal, Balligand Jean-Luc, Feron Olivier
University of Louvain Medical School, Unit of Pharmacology and Therapeutics, Brussels, Belgium.
Circ Res. 2004 Jul 23;95(2):154-61. doi: 10.1161/01.RES.0000136344.27825.72. Epub 2004 Jun 17.
Nitric oxide (NO) is a powerful angiogenic mediator acting downstream of vascular endothelial growth factor (VEGF). Both the endothelial NO synthase (eNOS) and the VEGFR-2 receptor colocalize in caveolae. Because the structural protein of these signaling platforms, caveolin, also represses eNOS activity, changes in its abundance are likely to influence the angiogenic process in various ways. In this study, we used mice deficient for the caveolin-1 gene (Cav-/-) to examine the impact of caveolae suppression in a model of adaptive angiogenesis obtained after femoral artery resection. Evaluation of the ischemic tissue perfusion and histochemical analyses revealed that contrary to Cav+/+ mice, Cav-/- mice failed to recover a functional vasculature and actually lost part of the ligated limbs, thereby recapitulating the effects of the NOS inhibitor L-NAME administered to operated Cav+/+ mice. We also isolated endothelial cells (ECs) from Cav-/- aorta and showed that on VEGF stimulation, NO production and endothelial tube formation were dramatically abrogated when compared with Cav+/+ ECs. The Ser1177 eNOS phosphorylation and Thr495 dephosphorylation but also the ERK phosphorylation were similarly altered in VEGF-treated Cav-/- ECs. Interestingly, caveolin transfection in Cav-/- ECs redirected the VEGFR-2 in caveolar membranes and restored the VEGF-induced ERK and eNOS activation. However, when high levels of recombinant caveolin were reached, VEGF exposure failed to activate ERK and eNOS. These results emphasize the critical role of caveolae in ensuring the coupling between VEGFR-2 stimulation and downstream mediators of angiogenesis. This study also provides new insights to understand the paradoxical roles of caveolin (eg, repressing basal enzyme activity but facilitating activation on agonist stimulation) in cardiovascular pathophysiology.
一氧化氮(NO)是一种强大的血管生成介质,作用于血管内皮生长因子(VEGF)的下游。内皮型一氧化氮合酶(eNOS)和VEGFR-2受体都共定位于小窝。由于这些信号平台的结构蛋白小窝蛋白也会抑制eNOS活性,其丰度的变化可能会以多种方式影响血管生成过程。在本研究中,我们使用小窝蛋白-1基因缺陷的小鼠(Cav-/-),在股动脉切除后获得的适应性血管生成模型中研究小窝抑制的影响。对缺血组织灌注的评估和组织化学分析表明,与Cav+/+小鼠相反,Cav-/-小鼠未能恢复功能性脉管系统,实际上还失去了部分结扎肢体,从而重现了给予手术的Cav+/+小鼠一氧化氮合酶抑制剂L-NAME后的效果。我们还从Cav-/-主动脉中分离出内皮细胞(ECs),并表明与Cav+/+ ECs相比,在VEGF刺激下,Cav-/- ECs的NO生成和内皮管形成显著减少。在VEGF处理的Cav-/- ECs中,Ser1177 eNOS磷酸化和Thr495去磷酸化以及ERK磷酸化也有类似改变。有趣的是,在Cav-/- ECs中转染小窝蛋白可使VEGFR-2重新定位于小窝膜,并恢复VEGF诱导的ERK和eNOS激活。然而,当达到高水平的重组小窝蛋白时,VEGF暴露未能激活ERK和eNOS。这些结果强调了小窝在确保VEGFR-2刺激与血管生成下游介质之间偶联中的关键作用。本研究还为理解小窝蛋白在心血管病理生理学中的矛盾作用(例如,抑制基础酶活性但在激动剂刺激时促进激活)提供了新的见解。