Suppr超能文献

线粒体呼吸链部分组装成超复合物:通量控制分析的动力学证据

The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis.

作者信息

Bianchi Cristina, Genova Maria Luisa, Parenti Castelli Giovanna, Lenaz Giorgio

机构信息

Dipartimento di Biochimica G. Moruzzi, Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy.

出版信息

J Biol Chem. 2004 Aug 27;279(35):36562-9. doi: 10.1074/jbc.M405135200. Epub 2004 Jun 17.

Abstract

The model of the respiratory chain in which the enzyme complexes are independently embedded in the lipid bilayer of the inner mitochondrial membrane and connected by randomly diffusing coenzyme Q and cytochrome c is mostly favored. However, multicomplex units can be isolated from mammalian mitochondria, suggesting a model based on direct electron channeling between complexes. Kinetic testing using metabolic flux control analysis can discriminate between the two models: the former model implies that each enzyme may be rate-controlling to a different extent, whereas in the latter, the whole metabolic pathway would behave as a single supercomplex and inhibition of any one of its components would elicit the same flux control. In particular, in the absence of other components of the oxidative phosphorylation apparatus (i.e. ATP synthase, membrane potential, carriers), the existence of a supercomplex would elicit a flux control coefficient near unity for each respiratory complex, and the sum of all coefficients would be well above unity. Using bovine heart mitochondria and submitochondrial particles devoid of substrate permeability barriers, we investigated the flux control coefficients of the complexes involved in aerobic NADH oxidation (I, III, IV) and in succinate oxidation (II, III, IV). Both Complexes I and III were found to be highly rate-controlling over NADH oxidation, a strong kinetic evidence suggesting the existence of functionally relevant association between the two complexes, whereas Complex IV appears randomly distributed. Moreover, we show that Complex II is fully rate-limiting for succinate oxidation, clearly indicating the absence of substrate channeling toward Complexes III and IV.

摘要

最受青睐的呼吸链模型是,酶复合物独立嵌入线粒体内膜的脂质双层中,并通过随机扩散的辅酶Q和细胞色素c相连。然而,多复合物单元可从哺乳动物线粒体中分离出来,这表明存在一种基于复合物之间直接电子传递的模型。使用代谢通量控制分析进行的动力学测试可以区分这两种模型:前一种模型意味着每种酶可能在不同程度上控制反应速率,而在后一种模型中,整个代谢途径将表现为一个单一的超复合物,抑制其任何一个组分都会引发相同的通量控制。特别是,在缺乏氧化磷酸化装置的其他组分(即ATP合酶、膜电位、载体)的情况下,超复合物的存在将使每个呼吸复合物的通量控制系数接近1,并且所有系数的总和将远高于1。我们使用牛心线粒体和没有底物通透屏障的亚线粒体颗粒,研究了参与有氧NADH氧化(复合物I、III、IV)和琥珀酸氧化(复合物II、III、IV)的复合物的通量控制系数。发现复合物I和III对NADH氧化具有高度的速率控制作用,这是一个强有力的动力学证据,表明这两种复合物之间存在功能上相关的关联,而复合物IV似乎是随机分布的。此外,我们表明复合物II对琥珀酸氧化完全起速率限制作用,清楚地表明不存在向复合物III和IV的底物通道化现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验