Biedermann Wolfgang, Lücker Ernst, Pörschmann Jürgen, Lachhab Sandra, Truyen Uwe, Hensel Andreas
Institut für Tierhygiene und Offentliches Veterinärwesen, Universität Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany.
Anal Bioanal Chem. 2004 Aug;379(7-8):1031-8. doi: 10.1007/s00216-004-2679-x. Epub 2004 Jun 18.
Identification of bovine and ovine tissue from the central nervous system (CNS: brain and spinal cord) in meat products is possible by using certain CNS fatty acids as biomarkers in GC-MS analysis. Furthermore, the relationship between the isomers of the tetracosenic acid (C24:1) is important for differentiation of the species and age of the CNS in view of the legal definition of specified risk material (SRM). This has so far been referred to as the "cis/trans ratio of the isomers of nervonic acid"; however, structural analysis was not performed. Here we present results from GC-MS structural analysis by retention time and DMDS adduct profiling of the even numbered monoenoic fatty acids from C18:1 to C26:1. Retention times and mass spectra of the FAME standards indicated that the so far designated trans-nervonic acid has a different isomeric structure in the tetracosenic acid from brain-sample extracts. By performing GC-MS analysis of DMDS adducts we have shown that this isomer was actually cis-17-tetracosenic acid in all species so far tested, not trans-15-tetracosenic acid ( trans-nervonic acid). The tetracosenic acid isomer ratio proved to be species-specific in accordance with previous results. Thus, instead of the ratio of cis/trans isomers of nervonic acid, the ratio of omega 9/omega 7-tetracosenic acid (15c-C24:1/17c-C24:1) will have to be used as a correct reference in future publications. Although trans isomers were not detectable in sheep and cattle brain, porcine brain contained, in addition to cis-17-tetracosenic acid, small amounts of the trans isomers of the C18:1, C20:1, C24:1, and C26:1 fatty acids, in decreasing quantities. In future, this might be useful as another means of differentiation between porcine CNS (non-SRM) and ovine or bovine CNS (SRM). Extensive follow-up studies must be performed to elucidate the extent to which this GC-MS approach will facilitate the detection of CNS according to the legal SRM definition.
通过在气相色谱 - 质谱(GC-MS)分析中使用某些中枢神经系统脂肪酸作为生物标志物,可以鉴定肉制品中来自中枢神经系统(CNS:脑和脊髓)的牛和羊组织。此外,鉴于特定风险物质(SRM)的法定定义,二十四碳烯酸(C24:1)异构体之间的关系对于区分中枢神经系统的物种和年龄很重要。到目前为止,这一直被称为“神经酸异构体的顺式/反式比率”;然而,尚未进行结构分析。在此,我们展示了通过保留时间和对从C18:1到C26:1的偶数单烯脂肪酸进行二甲基二硫(DMDS)加合物分析的GC-MS结构分析结果。脂肪酸甲酯(FAME)标准品的保留时间和质谱表明,到目前为止指定的反式神经酸在脑样本提取物的二十四碳烯酸中具有不同的异构体结构。通过对DMDS加合物进行GC-MS分析,我们表明在迄今为止测试的所有物种中,这种异构体实际上是顺式 - 17 - 二十四碳烯酸,而不是反式 - 15 - 二十四碳烯酸(反式神经酸)。根据先前的结果,二十四碳烯酸异构体比率被证明具有物种特异性。因此,在未来的出版物中,将不得不使用ω9/ω7 - 二十四碳烯酸(15c - C24:1/17c - C24:1)的比率作为正确的参考,而不是神经酸的顺式/反式异构体比率。虽然在绵羊和牛脑中未检测到反式异构体,但猪脑除了含有顺式 - 17 - 二十四碳烯酸外,还含有少量的C18:1、C20:1、C24:1和C26:1脂肪酸的反式异构体,含量逐渐减少。未来,这可能作为区分猪中枢神经系统(非SRM)与绵羊或牛中枢神经系统(SRM)的另一种方法。必须进行广泛的后续研究,以阐明这种GC-MS方法在多大程度上有助于根据法定SRM定义检测中枢神经系统。