Suppr超能文献

酪氨酸门控电子转移是阿尔茨海默病β-淀粉样蛋白毒性机制的关键。

Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease beta-amyloid.

作者信息

Barnham Kevin J, Haeffner Fredrik, Ciccotosto Giuseppe D, Curtain Cyril C, Tew Deborah, Mavros Christine, Beyreuther Konrad, Carrington Darryl, Masters Colin L, Cherny Robert A, Cappai Roberto, Bush Ashley I

机构信息

Department of Pathology, University of Melbourne, Victoria, Australia.

出版信息

FASEB J. 2004 Sep;18(12):1427-9. doi: 10.1096/fj.04-1890fje. Epub 2004 Jul 1.

Abstract

Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles and amyloid plaques, which are abnormal protein deposits. The major constituent of the plaques is the neurotoxic beta-amyloid peptide (Abeta); the genetics of familial AD support a direct role for this peptide in AD. Abeta neurotoxicity is linked to hydrogen peroxide formation. Abeta coordinates the redox active transition metals, copper and iron, to catalytically generate reactive oxygen species. The chemical mechanism underlying this process is not well defined. With the use of density functional theory calculations to delineate the chemical mechanisms that drive the catalytic production of H2O2 by Abeta/Cu, tyrosine10 (Y10) was identified as a pivotal residue for this reaction to proceed. The relative stability of tyrosyl radicals facilitates the electron transfers that are required to drive the reaction. Confirming the theoretical results, mutation of the tyrosine residue to alanine inhibited H2O2 production, Cu-induced radicalization, dityrosine cross-linking, and neurotoxicity.

摘要

阿尔茨海默病(AD)的特征是存在神经原纤维缠结和淀粉样斑块,它们是异常的蛋白质沉积物。斑块的主要成分是神经毒性β-淀粉样肽(Aβ);家族性AD的遗传学支持该肽在AD中起直接作用。Aβ神经毒性与过氧化氢的形成有关。Aβ与氧化还原活性过渡金属铜和铁配位,以催化产生活性氧。该过程的化学机制尚未明确界定。通过使用密度泛函理论计算来描述由Aβ/铜催化产生H2O2的化学机制,酪氨酸10(Y10)被确定为该反应进行的关键残基。酪氨酰自由基的相对稳定性促进了驱动反应所需的电子转移。证实理论结果的是,酪氨酸残基突变为丙氨酸会抑制H2O2的产生、铜诱导的自由基化、二酪氨酸交联和神经毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验