Suppr超能文献

移动环的有序-无序转变调节伴侣蛋白循环的速度。

A mobile loop order-disorder transition modulates the speed of chaperonin cycling.

作者信息

Shewmaker Frank, Kerner Michael J, Hayer-Hartl Manajit, Klein Gracjana, Georgopoulos Costa, Landry Samuel J

机构信息

Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.

出版信息

Protein Sci. 2004 Aug;13(8):2139-48. doi: 10.1110/ps.04773204. Epub 2004 Jul 6.

Abstract

Molecular machines order and disorder polypeptides as they form and dissolve large intermolecular interfaces, but the biological significance of coupled ordering and binding has been established in few, if any, macromolecular systems. The ordering and binding of GroES co-chaperonin mobile loops accompany an ATP-dependent conformational change in the GroEL chaperonin that promotes client protein folding. Following ATP hydrolysis, disordering of the mobile loops accompanies co-chaperonin dissociation, reversal of the GroEL conformational change, and release of the client protein. "High-affinity" GroEL mutants were identified by their compatibility with "low-affinity" co-chaperonin mutants and incompatibility with high-affinity co-chaperonin mutants. Analysis of binding kinetics using the intrinsic fluorescence of tryptophan-containing co-chaperonin variants revealed that excessive affinity causes the chaperonin to stall in a conformation that forms in the presence of ATP. Destabilizing the beta-hairpins formed by the mobile loops restores the normal rate of dissociation. Thus, the free energy of mobile-loop ordering and disordering acts like the inertia of an engine's flywheel by modulating the speed of chaperonin conformational changes.

摘要

分子机器在形成和溶解大的分子间界面时对多肽进行有序化和无序化处理,但是耦合的有序化和结合的生物学意义在极少的大分子系统中得以确立,甚至可以说几乎没有。伴侣蛋白GroES可移动环的有序化和结合伴随着伴侣蛋白GroEL中依赖ATP的构象变化,这种变化促进了客户蛋白的折叠。ATP水解后,可移动环的无序化伴随着伴侣蛋白共分子的解离、GroEL构象变化的逆转以及客户蛋白的释放。“高亲和力”的GroEL突变体是通过它们与“低亲和力”伴侣蛋白共分子突变体的兼容性以及与高亲和力伴侣蛋白共分子突变体的不兼容性来鉴定的。使用含色氨酸的伴侣蛋白共分子变体的固有荧光对结合动力学进行分析,结果显示,过高的亲和力会使伴侣蛋白停滞在ATP存在时形成的构象中。使由可移动环形成的β-发夹结构不稳定可恢复正常的解离速率。因此,可移动环有序化和无序化的自由能通过调节伴侣蛋白构象变化的速度,起到了类似发动机飞轮惯性的作用。

相似文献

1
A mobile loop order-disorder transition modulates the speed of chaperonin cycling.
Protein Sci. 2004 Aug;13(8):2139-48. doi: 10.1110/ps.04773204. Epub 2004 Jul 6.
2
Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
Biochem Biophys Res Commun. 2015 Oct 9;466(1):15-20. doi: 10.1016/j.bbrc.2015.08.034. Epub 2015 Aug 11.
4
Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level.
J Mol Biol. 2014 Jul 29;426(15):2739-54. doi: 10.1016/j.jmb.2014.04.018. Epub 2014 May 6.
6
A dynamic model of long-range conformational adaptations triggered by nucleotide binding in GroEL-GroES.
Proteins. 2012 Oct;80(10):2333-46. doi: 10.1002/prot.24113. Epub 2012 Jul 6.
7
Evaluation of the stability of an SR398/GroES chaperonin complex.
J Biochem. 2014 May;155(5):295-300. doi: 10.1093/jb/mvu009. Epub 2014 Feb 21.
8
Chaperonin function depends on structure and disorder in co-chaperonin mobile loops.
Pac Symp Biocomput. 1999:520-31. doi: 10.1142/9789814447300_0052.
9
Characterisation of mutations in GroES that allow GroEL to function as a single ring.
FEBS Lett. 2009 Jul 21;583(14):2365-71. doi: 10.1016/j.febslet.2009.06.027. Epub 2009 Jun 21.
10
The importance of a mobile loop in regulating chaperonin/ co-chaperonin interaction: humans versus Escherichia coli.
J Biol Chem. 2001 Feb 16;276(7):4981-7. doi: 10.1074/jbc.M008628200. Epub 2000 Oct 24.

引用本文的文献

3
Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin.
PLoS One. 2012;7(12):e50318. doi: 10.1371/journal.pone.0050318. Epub 2012 Dec 4.
4
Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes.
J Biol Chem. 2012 Jun 8;287(24):20471-81. doi: 10.1074/jbc.M112.365411. Epub 2012 Apr 19.
5
An ORFan no more: the bacteriophage T4 39.2 gene product, NwgI, modulates GroEL chaperone function.
Genetics. 2012 Mar;190(3):989-1000. doi: 10.1534/genetics.111.135640. Epub 2012 Jan 10.
6
Allosteric transitions of supramolecular systems explored by network models: application to chaperonin GroEL.
PLoS Comput Biol. 2009 Apr;5(4):e1000360. doi: 10.1371/journal.pcbi.1000360. Epub 2009 Apr 17.
7
Markov propagation of allosteric effects in biomolecular systems: application to GroEL-GroES.
Mol Syst Biol. 2006;2:36. doi: 10.1038/msb4100075. Epub 2006 Jul 4.

本文引用的文献

1
Protein-DNA interactions: how GCN4 binds DNA.
Curr Biol. 1993 Mar;3(3):182-4. doi: 10.1016/0960-9822(93)90268-s.
2
ATP induces large quaternary rearrangements in a cage-like chaperonin structure.
Curr Biol. 1993 May 1;3(5):265-73. doi: 10.1016/0960-9822(93)90176-o.
4
The physics and bioinformatics of binding and folding-an energy landscape perspective.
Biopolymers. 2003 Mar;68(3):333-49. doi: 10.1002/bip.10286.
5
Structural characterisation and functional significance of transient protein-protein interactions.
J Mol Biol. 2003 Jan 31;325(5):991-1018. doi: 10.1016/s0022-2836(02)01281-0.
6
Intrinsic disorder in cell-signaling and cancer-associated proteins.
J Mol Biol. 2002 Oct 25;323(3):573-84. doi: 10.1016/s0022-2836(02)00969-5.
7
Bacteriophage-encoded cochaperonins can substitute for Escherichia coli's essential GroES protein.
EMBO Rep. 2002 Sep;3(9):893-8. doi: 10.1093/embo-reports/kvf176. Epub 2002 Aug 16.
8
Intrinsic disorder and protein function.
Biochemistry. 2002 May 28;41(21):6573-82. doi: 10.1021/bi012159+.
10
Coupling of folding and binding for unstructured proteins.
Curr Opin Struct Biol. 2002 Feb;12(1):54-60. doi: 10.1016/s0959-440x(02)00289-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验