Reichhardt C, Olson Reichhardt C J, Hastings M B
Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056115. doi: 10.1103/PhysRevE.69.056115. Epub 2004 May 26.
We investigate the dynamical motion of particles on a two-dimensional symmetric periodic substrate in the presence of both a dc drive along a symmetry direction of the periodic substrate and an additional circular ac drive. For large enough ac drives, the particle orbit encircles one or more potential maxima of the periodic substrate. In this case, when an additional increasing dc drive is applied in the longitudinal direction, the longitudinal velocity increases in a series of discrete steps that are integer multiples of a omega/(2 pi), where a is the lattice constant of the substrate. Fractional steps can also occur. These integer and fractional steps correspond to distinct stable dynamical orbits. A number of these phases also show a rectification in the positive or negative transverse direction where a nonzero transverse velocity occurs in the absence of a dc transverse drive. We map out the phase diagrams of the regions of rectification as a function of ac amplitude, and find a series of tongues. Most of the features, including the steps in the longitudinal velocity and the transverse rectification, can be captured with a simple toy model and by arguments from nonlinear maps. We have also investigated the effects of thermal disorder and incommensuration on the rectification phenomena, and find that for increasing disorder, the rectification regions are gradually smeared and the longitudinal velocity steps are no longer flat but show a linearly increasing velocity.
我们研究了在二维对称周期性衬底上粒子的动力学运动,此时存在沿周期性衬底对称方向的直流驱动以及额外的圆形交流驱动。对于足够大的交流驱动,粒子轨道环绕周期性衬底的一个或多个势能最大值。在这种情况下,当在纵向方向施加额外增加的直流驱动时,纵向速度以一系列离散步骤增加,这些步骤是(a\omega/(2\pi))的整数倍,其中(a)是衬底的晶格常数。也会出现分数步。这些整数步和分数步对应于不同的稳定动力学轨道。许多这些相在正或负横向方向也表现出整流现象,即在没有直流横向驱动时出现非零横向速度。我们绘制了作为交流幅度函数的整流区域的相图,并发现了一系列舌状区域。大多数特征,包括纵向速度的步长和横向整流,都可以用一个简单的玩具模型以及非线性映射的论证来捕捉。我们还研究了热无序和失配对准整流现象的影响,发现随着无序增加,整流区域逐渐模糊,纵向速度步长不再平坦而是呈现线性增加的速度。