Suppr超能文献

射频阱的普遍不稳定性。

Universal instabilities of radio-frequency traps.

作者信息

Garrick-Bethell I, Clausen Th, Blümel R

机构信息

MIT Center for Space Research, Cambridge, Massachusetts 02139, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056222. doi: 10.1103/PhysRevE.69.056222. Epub 2004 May 26.

Abstract

Using standard tools of nonlinear dynamics we analyze recently discovered instabilities of radio-frequency charged-particle traps. In the cw-driven cylindrical Kingdon trap the instabilities occur at the two values eta*(3) =3.6130467...and eta*(4) =4.4311244...of the trap's control parameter eta. Analytical estimates based on the theory of Mathieu functions predict eta*(3) =pi square root of [(363-32 pi(2))/(66 pi square root of (6-48 pi(2))]=3.6923922...and eta*(4) = [(square root of pi)/2) x (363-32 pi(2))/(square root of (1089+48 pi(2))-12 pi) =4.4965466... The kicked Kingdon trap, an analytically solvable model, predicts eta*(3) = 1/3 square root of 105=3.4156502...and eta*(4) = square root of 17=4.1231056... We show that similar instabilities occur in the two-particle Paul trap and the cw-driven spherical Kingdon trap.

摘要

我们使用非线性动力学的标准工具来分析最近发现的射频带电粒子阱的不稳定性。在连续波驱动的圆柱形金登阱中,不稳定性出现在阱的控制参数η的两个值η*(3)=3.6130467...和η*(4)=4.4311244...处。基于马蒂厄函数理论的分析估计预测η*(3)=π√[(363 - 32π²)/(66π√(6 - 48π²))]=3.6923922...,以及η*(4)=[(√π)/2]×(363 - 32π²)/(√(1089 + 48π²) - 12π)=4.4965466...。受激金登阱是一个可解析求解的模型,预测η*(3)=1/3√105 = 3.4156502...,以及η*(4)=√17 = 4.1231056...。我们表明,在双粒子保罗阱和连续波驱动的球形金登阱中也会出现类似的不稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验