Suppr超能文献

受限几何结构中流体细丝的破裂:液滴-栓塞转变、扰动敏感性以及受限条件下的动力学稳定化

Breakup of a fluid thread in a confined geometry: droplet-plug transition, perturbation sensitivity, and kinetic stabilization with confinement.

作者信息

Hagedorn John G, Martys Nicos S, Douglas Jack F

机构信息

Mathematical and Computational Sciences Division, Nantional Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056312. doi: 10.1103/PhysRevE.69.056312. Epub 2004 May 27.

Abstract

We investigate the influence of geometrical confinement on the breakup of long fluid threads in the absence of imposed flow using a lattice Boltzmann model. Our simulations primarily focus on the case of threads centered coaxially in a tube filled with another Newtonian fluid and subjected to both impulsive and random perturbations. We observe a significant slowing down of the rate of thread breakup ("kinetic stabilization") over a wide range of the confinement, Lambda= R(tube)/R(thread) < or =10 and find that the relative surface energies of the liquid components influence this effect. For Lambda<2.3, there is a transition in the late-stage morphology between spherical droplets and tube "plugs." Unstable distorted droplets ("capsules") form as transient structures for intermediate confinement (Lambda approximately equal 2.1-2.5). Surprisingly, the thread breakup process for more confined threads (Lambda< or =1.9 ) is found to be sensitive to the nature of the initial thread perturbation. Localized impulsive perturbations ("taps") cause a "bulging" of the fluid at the wall, followed by thread breakup through the propagation of a wave-like disturbance ("end-pinch instability") initiating from the thread rupture point. Random impulses along the thread, modeling thermal fluctuations, lead to a complex breakup process involving a competition between the Raleigh and end-pinch instabilities. We also briefly compare our tube simulations to threads confined between parallel plates and to multiple interacting threads under confinement.

摘要

我们使用格子玻尔兹曼模型研究了在没有外加流动的情况下几何约束对长流体细丝破裂的影响。我们的模拟主要集中在细丝同轴位于充满另一种牛顿流体的管中并受到脉冲和随机扰动的情况。我们观察到在很宽的约束范围内(λ = R(管)/R(细丝)≤10)细丝破裂速率显著减慢(“动力学稳定”),并发现液体组分的相对表面能会影响这种效应。对于λ<2.3,后期形态在球形液滴和管“塞子”之间存在转变。对于中等约束(λ≈2.1 - 2.5),不稳定的变形液滴(“胶囊”)作为瞬态结构形成。令人惊讶的是,对于约束更强的细丝(λ≤1.9),细丝破裂过程对初始细丝扰动的性质敏感。局部脉冲扰动(“轻敲”)会导致壁处流体“鼓起”,随后通过从细丝破裂点引发的类似波的扰动(“端部收缩不稳定性”)的传播导致细丝破裂。沿细丝的随机脉冲模拟热涨落,会导致一个复杂的破裂过程,涉及瑞利不稳定性和端部收缩不稳定性之间的竞争。我们还简要地将我们的管模拟与平行板之间约束的细丝以及约束下多个相互作用的细丝进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验