Alvarez Jesus, Serra Rosa
Department of Cell Biology, University of Alabama at Birmingham, 35294, USA.
Dev Dyn. 2004 Aug;230(4):685-99. doi: 10.1002/dvdy.20100.
The most well-characterized intracellular signaling molecules for transforming growth factor-beta (TGF-beta) are the Smads. R-Smads interact with and are phosphorylated directly by the TGF-beta type I receptor. Phosphorylated R-Smads can then associate with Smad4, translocate to the nucleus and regulate transcription. Specific R-Smads transduce distinct signals for members of the TGF-beta superfamily. Smad2 and -3 mediate signaling by TGF-beta/activin, whereas Smad1, -5, and -8 mediate bone morphogenetic protein signaling. TGF-beta inhibits proliferation and hypertrophic differentiation in metatarsal organ cultures by a perichondrium-dependent mechanism. To determine the mechanism of TGF-beta signaling in the perichondrium, we tested the hypothesis that TGF-beta-restricted Smad2 and Smad3 regulate chondrocyte proliferation and differentiation in embryonic metatarsal organ cultures. Perichondrium was infected with adenoviruses containing dominant-negative forms of Smad2 (Ad-Smad2-3SA) and Smad3 (Ad-Smad3 Delta C). Proliferation and differentiation were measured in response to treatment with TGF-beta 1. Results were compared with control bones infected with a beta-galactosidase reporter virus (Ad-beta-gal). Infection with Ad-Smad2-3SA completely blocked the effects of TGF-beta 1 on metatarsal development while Ad-Smad3 Delta C only partially blocked TGF-beta 1 effects. To further characterize the role of Smad3 in long bone development, TGF-beta 1 responsiveness in cultures from Smad3(+/+) and Smad3(ex8/ex8) mice were compared. Loss of Smad3 only partially blocked the effects of TGF-beta1 on differentiation. In contrast, the effects of TGF-beta 1 on chondrocyte proliferation were blocked completely. We conclude that Smad2 signaling in the perichondrium can compensate for the loss of Smad3 to regulate inhibition of hypertrophic differentiation; however, Smad3 is required for TGF-beta 1-mediated effects on proliferation.
转化生长因子-β(TGF-β)最为人熟知的细胞内信号分子是Smad蛋白。受体调节型Smad蛋白(R-Smads)与TGF-β I型受体相互作用并直接被其磷酸化。磷酸化的R-Smads随后可与Smad4结合,转位至细胞核并调节转录。特定的R-Smads为TGF-β超家族成员转导不同的信号。Smad2和Smad3介导TGF-β/激活素的信号传导,而Smad1、Smad5和Smad8介导骨形态发生蛋白的信号传导。TGF-β通过一种依赖软骨膜的机制抑制跖骨器官培养物中的增殖和肥大分化。为了确定TGF-β在软骨膜中的信号传导机制,我们检验了这样一个假说,即TGF-β特异性的Smad2和Smad3调节胚胎跖骨器官培养物中软骨细胞的增殖和分化。用含有显性负性形式的Smad2(Ad-Smad2-3SA)和Smad3(Ad-Smad3ΔC)的腺病毒感染软骨膜。测量TGF-β1处理后的增殖和分化情况。将结果与感染β-半乳糖苷酶报告病毒(Ad-β-gal)的对照骨进行比较。用Ad-Smad2-3SA感染完全阻断了TGF-β1对跖骨发育的影响,而Ad-Smad3ΔC仅部分阻断了TGF-β1的作用。为了进一步明确Smad3在长骨发育中的作用,比较了来自Smad3(+/+)和Smad3(ex8/ex8)小鼠培养物中TGF-β1的反应性。Smad3缺失仅部分阻断了TGF-β1对分化的影响。相比之下,TGF-β1对软骨细胞增殖的影响被完全阻断。我们得出结论,软骨膜中的Smad2信号传导可补偿Smad3的缺失以调节对肥大分化的抑制;然而,Smad3是TGF-β1介导的增殖作用所必需的。