Moreno Angel J, Kob Walter
Laboratoire des Verres, Université Montpellier II, Place E. Bataillon, CC 069, F-34095 Montpellier, France.
J Chem Phys. 2004 Jul 1;121(1):380-6. doi: 10.1063/1.1758694.
We present extensive molecular dynamics simulations of the motion of a single linear rigid molecule in a two-dimensional random array of fixed overlapping disklike obstacles. The diffusion constants for the center of mass translation, D(CM), and for rotation, D(R), are calculated for a wide range of the molecular length, L, and the density of obstacles, rho. The obtained results follow a master curve Drho(micro) approximately (L(2)rho)(-nu) with an exponent micro=-3/4 and 1/4 for D(R) and D(CM), respectively, that can be deduced from simple scaling and kinematic arguments. The nontrivial positive exponent nu shows an abrupt crossover at L(2)rho=zeta(1). For D(CM) we find a second crossover at L(2)rho=zeta(2). The values of zeta(1) and zeta(2) correspond to the average minor and major axis of the elliptic holes that characterize the random configuration of the obstacles. A violation of the Stokes-Einstein-Debye relation is observed for L(2)rho>zeta(1), in analogy with the phenomenon of enhanced translational diffusion observed in supercooled liquids close to the glass transition temperature.
我们展示了单个线性刚性分子在二维固定重叠盘状障碍物随机阵列中运动的广泛分子动力学模拟。针对分子长度(L)和障碍物密度(\rho)的广泛范围,计算了质心平移扩散常数(D(CM))和转动扩散常数(D(R))。所得结果遵循主曲线(D\rho(\mu)\approx (L^{2}\rho)^{-\nu}),其中(D(R))和(D(CM))的指数(\mu)分别为(-3/4)和(1/4),这可从简单的标度和运动学论证推导得出。非平凡的正指数(\nu)在(L^{2}\rho = \zeta(1))处显示出突然的转变。对于(D(CM)),我们在(L^{2}\rho = \zeta(2))处发现第二个转变。(\zeta(1))和(\zeta(2))的值对应于表征障碍物随机构型的椭圆孔的平均短轴和长轴。对于(L^{2}\rho > \zeta(1)),观察到斯托克斯 - 爱因斯坦 - 德拜关系的违反,这类似于在接近玻璃化转变温度的过冷液体中观察到的增强平移扩散现象。