Feng Jie, Ruckenstein Eli
Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260-4200, USA.
J Chem Phys. 2004 Jul 15;121(3):1609-25. doi: 10.1063/1.1763140.
The structure of diblock copolymer melts under a single external electric or shear field, as well as under combined orthogonal external fields was investigated using a cell dynamic system. The phase structure was determined by coupling the effects of the external fields with the original structure of the bulk free of external fields. The single electric or shear field generated long-range cylinders in asymmetric A4mB6m diblock copolymers and distorted lamellae in symmetric A5mB5m diblock copolymers. Successive orthogonal shear followed by an electric external field generated long-range lamellae in symmetrical A5mB5m systems. However, the simultaneous orthogonal electric and shear fields could more easily form long-range lamellae than the sequential orthogonal fields. The dynamical processes in diblock copolymer melts under orthogonal fields have been also examined.