Borgmann U, Norwood W P, Dixon D G
National Water Research Institute, Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, Ontario, Canada, L7R 4A6.
Environ Pollut. 2004 Oct;131(3):469-84. doi: 10.1016/j.envpol.2004.02.010.
Bioaccumulation by Hyalella of all metals studied so far in our laboratory was re-evaluated to determine if the data could be explained satisfactorily using saturation models. Saturation kinetics are predicted by the biotic ligand model (BLM), now widely used in modelling acute toxicity, and are a pre-requisite if the BLM is to be applied to chronic toxicity. Saturation models provided a good fit to all the data. Since these are mechanistically based, they provide additional insights into metal accumulation mechanisms not immediately apparent when using allometric models. For example, maximum Cd accumulation is dependent on the hardness of the water to which Hyalella are acclimated. The BLM may need to be modified when applied to chronic toxicity. Use of saturation models for bioaccumulation, however, also necessitates the need for using saturation models for dose-response relationships in order to produce unambiguous estimates of LC50 values based on water and body concentrations. This affects predictions of toxicity at very low metal concentrations and results in lower predicted toxicity of mixtures when many metals are present at low concentrations.
对我们实验室目前研究的所有金属在溪蟹体内的生物累积情况进行了重新评估,以确定能否使用饱和模型对数据作出令人满意的解释。饱和动力学是由生物配体模型(BLM)预测得出的,该模型目前广泛应用于急性毒性建模,并且如果要将BLM应用于慢性毒性,饱和动力学是一个先决条件。饱和模型对所有数据都拟合得很好。由于这些模型基于机制,它们能提供额外的见解,有助于了解在使用异速生长模型时不那么直观明显的金属累积机制。例如,最大镉累积量取决于溪蟹所适应水体的硬度。当应用于慢性毒性时,可能需要对BLM进行修正。然而,使用饱和模型进行生物累积研究时,也需要使用饱和模型来研究剂量 - 反应关系,以便基于水体和生物体内浓度得出明确的半数致死浓度(LC50)值估计。这会影响对极低金属浓度下毒性的预测,并且当存在多种低浓度金属时,会导致对混合物毒性的预测值降低。