Suppr超能文献

运用时间序列分析预测津巴布韦的博恩蜱(希伯来花蜱)侵扰情况。

The use of time-series analysis to forecast bont tick (Amblyomma hebraeum) infestations in Zimbabwe.

作者信息

Meltzer M I, Norval R A

机构信息

Department of Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville 32611-0633.

出版信息

Exp Appl Acarol. 1992 Mar;13(4):261-79. doi: 10.1007/BF01195083.

Abstract

Studying the dynamics of tick infestations on cattle is an essential step in developing optimal strategies for tick control. Successful strategic tick control requires accurate predictions of when tick infestations will reach predetermined threshold levels. In the case of Amblyomma hebraeum, earlier work has shown that there is no consistent pattern of seasonal activity. This means that a statistical model for predicting A. hebraeum infestations cannot reliably use climatic factors as the only independent variables. An alternative method is to apply time-series, or auto-regressive moving-average (ARMA), analysis which uses only the past population patterns to predict future trends. This technique was applied to a data set consisting of 108 weekly tick counts of A. hebraeum (adult males, standard females, flat females and standard nymphs), conducted at an experimental station in southeastern Zimbabwe. The ability of the ARMA models to fit and predict actual tick infestations was judged using two sets of criteria. The first set focused on the goodness-of-fit, and used the adjusted R2 values, Q statistic and the Akaike Information Criteria. The second set of criteria measured the forecasting accuracy of an estimated equation, and consisted of regressing a 9-period forecast against an actual out-of-sample data set not used in the estimation process. The root mean square error of the forecast was also considered when comparing several models for the same data set. Using these criteria, the models estimated using the ARMA technique were judged to both fit and forecast with sufficient accuracy to warrant their use in strategic tick control. Although the success of using ARMA to forecast A. hebraeum is partly due to the non-seasonal behavior of the species, the results presented here suggest that it is worthwhile exploring the use of ARMA techniques to model the dynamics of other tick species. Where independent variables exert considerable influence on the dynamics of a tick species, these variables can be incorporated into an ARMA-style model.

摘要

研究牛蜱侵袭的动态是制定最佳蜱虫控制策略的关键一步。成功的蜱虫控制策略需要准确预测蜱虫侵袭何时会达到预定的阈值水平。对于希伯来花蜱而言,早期研究表明其季节性活动没有一致的模式。这意味着用于预测希伯来花蜱侵袭的统计模型不能仅将气候因素可靠地用作唯一的自变量。另一种方法是应用时间序列分析,即自回归移动平均(ARMA)分析,该方法仅使用过去的种群模式来预测未来趋势。这项技术应用于一个数据集,该数据集由在津巴布韦东南部一个实验站进行的108次希伯来花蜱(成年雄性、标准雌性、扁平雌性和标准若虫)每周蜱虫计数组成。使用两组标准来判断ARMA模型拟合和预测实际蜱虫侵袭的能力。第一组标准侧重于拟合优度,并使用调整后的R2值、Q统计量和赤池信息准则。第二组标准衡量估计方程的预测准确性,包括将一个9期预测与估计过程中未使用的实际样本外数据集进行回归分析。在比较同一数据集的多个模型时,还考虑了预测的均方根误差。使用这些标准,判断使用ARMA技术估计的模型在拟合和预测方面具有足够的准确性,足以保证其在蜱虫控制策略中的应用。尽管使用ARMA预测希伯来花蜱的成功部分归因于该物种的非季节性行为,但此处呈现的结果表明,探索使用ARMA技术对其他蜱虫物种的动态进行建模是值得的。在自变量对蜱虫物种的动态有相当大影响的情况下,可以将这些变量纳入ARMA风格的模型中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验