Suppr超能文献

嗜热蓝藻细长聚球藻中的昼夜节律:在较宽温度范围内周期长度的补偿

Circadian rhythms in the thermophilic cyanobacterium Thermosynechococcus elongatus: compensation of period length over a wide temperature range.

作者信息

Onai Kiyoshi, Morishita Megumi, Itoh Shino, Okamoto Kazuhisa, Ishiura Masahiro

机构信息

Center for Gene Research, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.

出版信息

J Bacteriol. 2004 Aug;186(15):4972-7. doi: 10.1128/JB.186.15.4972-4977.2004.

Abstract

Proteins derived from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, which performs plant-type oxygenic photosynthesis, are suitable for biochemical, biophysical, and X-ray crystallographic studies. We developed an automated bioluminescence real-time monitoring system for the circadian clock in the thermophilic cyanobacterium T. elongatus BP-1 that uses a bacterial luciferase gene set (Xl luxAB) derived from Xenorhabdus luminescens as a bioluminescence reporter gene. A promoter region of the psbA1 gene of T. elongatus was fused to the Xl luxAB gene set and inserted into a specific targeting site in the genome of T. elongatus. The bioluminescence from the cells of the psbA1-reporting strain was measured by an automated monitoring apparatus with photomultiplier tubes. The strain exhibited the circadian rhythms of bioluminescence with a 25-h period length for at least 10 days in constant light and temperature. The rhythms were reset by light-dark cycle, and their period length was almost constant over a wide range of temperatures (30 to 60 degrees C). Theses results indicate that T. elongatus has the circadian clock that is widely temperature compensated.

摘要

来源于嗜热蓝细菌嗜热栖热放线菌BP-1(该菌进行植物型产氧光合作用)的蛋白质适用于生化、生物物理和X射线晶体学研究。我们开发了一种用于嗜热蓝细菌嗜热栖热放线菌BP-1生物钟的自动生物发光实时监测系统,该系统使用来源于发光杆菌的细菌荧光素酶基因集(Xl luxAB)作为生物发光报告基因。嗜热栖热放线菌的psbA1基因的启动子区域与Xl luxAB基因集融合,并插入到嗜热栖热放线菌基因组中的特定靶向位点。通过带有光电倍增管的自动监测装置测量psbA1报告菌株细胞的生物发光。该菌株在恒定光照和温度下,生物发光呈现出25小时周期长度的昼夜节律,至少持续10天。这些节律可通过明暗循环重置,并且在很宽的温度范围(30至60摄氏度)内其周期长度几乎恒定。这些结果表明嗜热栖热放线菌具有广泛温度补偿的生物钟。

相似文献

2
Circadian rhythm of the cyanobacterium Synechocystis sp. strain PCC 6803 in the dark.
J Bacteriol. 1997 Sep;179(18):5751-5. doi: 10.1128/jb.179.18.5751-5755.1997.
3
Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria.
Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5672-6. doi: 10.1073/pnas.90.12.5672.
4
Circadian expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803.
J Bacteriol. 1995 Oct;177(19):5606-11. doi: 10.1128/jb.177.19.5606-5611.1995.
5
Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria.
J Bacteriol. 1995 Apr;177(8):2080-6. doi: 10.1128/jb.177.8.2080-2086.1995.
7
Independence of circadian timing from cell division in cyanobacteria.
J Bacteriol. 2001 Apr;183(8):2439-44. doi: 10.1128/JB.183.8.2439-2444.2001.
8
Circadian orchestration of gene expression in cyanobacteria.
Genes Dev. 1995 Jun 15;9(12):1469-78. doi: 10.1101/gad.9.12.1469.

引用本文的文献

1
KaiC family ATPases in the nonheterocystous nitrogen-fixing cyanobacterium Leptolyngbya boryana.
Sci Rep. 2024 Dec 28;14(1):30949. doi: 10.1038/s41598-024-81991-x.
2
A Compensated Clock: Temperature and Nutritional Compensation Mechanisms Across Circadian Systems.
Bioessays. 2025 Mar;47(3):e202400211. doi: 10.1002/bies.202400211. Epub 2024 Dec 18.
3
Temperature-dependent fold-switching mechanism of the circadian clock protein KaiB.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2412327121. doi: 10.1073/pnas.2412327121. Epub 2024 Dec 13.
5
The Circadian Clock-A Molecular Tool for Survival in Cyanobacteria.
Life (Basel). 2020 Dec 20;10(12):365. doi: 10.3390/life10120365.
6
Structure, function, and mechanism of the core circadian clock in cyanobacteria.
J Biol Chem. 2018 Apr 6;293(14):5026-5034. doi: 10.1074/jbc.TM117.001433. Epub 2018 Feb 13.
7
Minimal tool set for a prokaryotic circadian clock.
BMC Evol Biol. 2017 Jul 21;17(1):169. doi: 10.1186/s12862-017-0999-7.
8
9
Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction.
J Cell Physiol. 2016 Nov;231(11):2339-45. doi: 10.1002/jcp.25428. Epub 2016 Jun 2.
10
Characterization of the role of a mechanosensitive channel in osmotic down shock adaptation in Synechocystis sp PCC 6803.
Channels (Austin). 2013 Jul-Aug;7(4):238-42. doi: 10.4161/chan.25350. Epub 2013 Jun 13.

本文引用的文献

1
ON TEMPERATURE INDEPENDENCE IN THE CLOCK SYSTEM CONTROLLING EMERGENCE TIME IN DROSOPHILA.
Proc Natl Acad Sci U S A. 1954 Oct;40(10):1018-29. doi: 10.1073/pnas.40.10.1018.
2
Crystal structure of the C-terminal clock-oscillator domain of the cyanobacterial KaiA protein.
Nat Struct Mol Biol. 2004 Jul;11(7):623-31. doi: 10.1038/nsmb781. Epub 2004 May 30.
4
Effects of temperature upon diurnal rhythms.
Cold Spring Harb Symp Quant Biol. 1960;25:87-104. doi: 10.1101/sqb.1960.025.01.009.
5
Influence of environmental and physiological factors on the daily rhythmic activity of a sea-pen.
Cold Spring Harb Symp Quant Biol. 1960;25:333-44. doi: 10.1101/sqb.1960.025.01.034.
6
ATP-induced hexameric ring structure of the cyanobacterial circadian clock protein KaiC.
Genes Cells. 2003 Mar;8(3):287-96. doi: 10.1046/j.1365-2443.2003.00633.x.
7
Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-A resolution.
Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):98-103. doi: 10.1073/pnas.0135651100. Epub 2002 Dec 23.
8
Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism.
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15357-62. doi: 10.1073/pnas.232517099. Epub 2002 Nov 15.
9
KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria.
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15788-93. doi: 10.1073/pnas.222467299. Epub 2002 Oct 21.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验