Maréchal X M
JAERI-RIKEN SPring-8 Project Team, Kamigori-cho, Ako-gun, Hyogo 678-12, Japan.
J Synchrotron Radiat. 1998 May 1;5(Pt 3):401-2. doi: 10.1107/S0909049597017093.
With an in-vacuum undulator, the smallest gaps can be used to achieve high-brilliance radiation within a small spectral width around the harmonics of the fundamental. However, some experiments require a scan over a much wider range of energy within timescales which are impossible to reach via gap tuning. For standard undulators a flat spectrum is usually obtained by using a variable tapered gap. Unfortunately, the mechanical design of the in-vacuum undulator used at SPring-8 is hardly compatible with the extra degree of freedom necessary to adjust the taper mechanically. New magnetic designs are investigated to overcome this problem; their performances are compared with the performances of a fixed-taper in-vacuum undulator for a source of photons in the 5-15 keV range (energy of the fundamental) with an energy width of 1.5 keV.
对于真空内摆动器,最小间隙可用于在基频谐波周围的小光谱宽度内实现高亮度辐射。然而,一些实验需要在通过间隙调谐无法达到的时间尺度内对更宽的能量范围进行扫描。对于标准摆动器,通常通过使用可变锥形间隙来获得平坦光谱。不幸的是,SPring-8使用的真空内摆动器的机械设计几乎与机械调节锥度所需的额外自由度不兼容。正在研究新的磁体设计以克服这个问题;将它们的性能与固定锥度真空内摆动器的性能进行比较,该摆动器用于5-15keV范围(基频能量)、能量宽度为1.5keV的光子源。