Gong Y, Wang Z, Liu T, Zhao W, Zhu Y, Johnson J A, Wu R
Department of Statistics, University of Florida, Gainesville, FL, USA.
Pharmacogenomics J. 2004;4(5):315-21. doi: 10.1038/sj.tpj.6500262.
Differential drug response, that is, pharmacodynamics, is most often likely to be a complex trait, controlled by the combined influences of multiple genes and environmental influences. Genetic mapping has proven to be a powerful tool for detecting and identifying specific genes affecting complex traits, that is, quantitative trait loci (QTL), based on polymorphic markers. In this article, we present a novel statistical model for genetic mapping of QTL governing pharmacodynamic processes. In principle, this model is a combination of functional mapping proposed to map function-valued traits and linkage disequilibrium mapping designed to provide high-resolution mapping of QTL by making use of recombination events created at a historic time. We implement a closed-form solution for the Expectation-Maximization algorithm to estimate the population genetic parameters of QTL and the simplex algorithm to estimate the curve parameters describing the pharmacodynamic changes of different QTL genotypes in response to drug dose or concentrations. Extensive simulations are performed to investigate the statistical properties of our model. The implications of our model in pharmacogenetic and pharmacogenomic research are discussed.
差异药物反应,即药效学,很可能是一种复杂性状,受多个基因的综合影响以及环境影响所控制。基于多态性标记,基因定位已被证明是检测和识别影响复杂性状(即数量性状基因座,QTL)的特定基因的有力工具。在本文中,我们提出了一种用于控制药效学过程的QTL基因定位的新型统计模型。原则上,该模型是为映射功能值性状而提出的功能定位与旨在通过利用历史时期产生的重组事件来提供QTL高分辨率定位的连锁不平衡定位的组合。我们为期望最大化算法实现了一种闭式解,以估计QTL的群体遗传参数,并为单纯形算法实现了一种闭式解,以估计描述不同QTL基因型对药物剂量或浓度响应的药效学变化的曲线参数。进行了广泛的模拟以研究我们模型的统计特性。讨论了我们的模型在药物遗传学和药物基因组学研究中的意义。