Riga Jeanne M, Martens Craig C
Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA.
J Chem Phys. 2004 Apr 15;120(15):6863-73. doi: 10.1063/1.1651472.
In this paper we describe an application of the trajectory-based semiclassical Liouville method for modeling coherent molecular dynamics on multiple electronic surfaces to the treatment of the evolution and decay of quantum electronic coherence in many-body systems. We consider a model representing the coherent evolution of quantum wave packets on two excited electronic surfaces of a diatomic molecule in the gas phase and in rare gas solvent environments, ranging from small clusters to a cryogenic solid. For the gas phase system, the semiclassical trajectory method is shown to reproduce the evolution of the electronic-nuclear coherence nearly quantitatively. The dynamics of decoherence are then investigated for the solvated systems using the semiclassical approach. It is found that, although solvation in general leads to more rapid and extensive loss of quantum coherence, the details of the coupled system-bath dynamics are important, and in some cases the environment can preserve or even enhance quantum coherence beyond that seen in the isolated system.
在本文中,我们描述了基于轨迹的半经典刘维尔方法在多电子表面上对相干分子动力学进行建模的一种应用,该方法用于处理多体系统中量子电子相干性的演化和衰减。我们考虑一个模型,该模型表示气相和稀有气体溶剂环境(从小团簇到低温固体)中双原子分子两个激发电子表面上量子波包的相干演化。对于气相系统,半经典轨迹方法被证明几乎能定量地重现电子 - 核相干性的演化。然后使用半经典方法研究溶剂化系统的退相干动力学。结果发现,虽然溶剂化通常会导致量子相干性更快且更广泛地丧失,但耦合系统 - 浴动力学的细节很重要,并且在某些情况下,环境可以保持甚至增强量子相干性,超过孤立系统中的情况。