Khelashvili George A, Scott H L
Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, Illinois 60616, USA.
J Chem Phys. 2004 May 22;120(20):9841-7. doi: 10.1063/1.1724814.
We have carried out atomic level molecular dynamics and Monte Carlo simulations of hydrated 18:0 sphingomyelin (SM)-cholesterol (CHOL) bilayers at temperatures of 20 and 50 degrees C. The simulated systems each contained 266 SM, 122 CHOL, and 11861 water molecules. Each simulation was run for 10 ns under semi-isotropic pressure boundary conditions. The particle-mesh Ewald method was used for long-range electrostatic interactions. Properties of the systems were calculated over the final 3 ns. We compare the properties of 20 and 50 degrees C bilayer systems with each other, with experimental data, and with experimental and simulated properties of pure SM bilayers and dipalmitoyl phospatidyl choline (DPPC)-CHOL bilayers. The simulations reveal an overall similarity of both systems, despite the 30 degrees C temperature difference which brackets the pure SM main phase transition. The area per molecule, lipid chain order parameter profiles, atom distributions, and electron density profiles are all very similar for the two simulated systems. Consistent with simulations from our lab and others, we find strong intramolecular hydrogen bonding in SM molecules between the phosphate ester oxygen and the hydroxyl hydrogen atoms. We also find that cholesterol hydroxyl groups tend to form hydrogen bonds primarily with SM carbonyl, methyl, and amide moieties and to a lesser extent methyl and hydroxyl oxygens.
我们在20摄氏度和50摄氏度下对水合18:0鞘磷脂(SM)-胆固醇(CHOL)双层进行了原子水平的分子动力学和蒙特卡罗模拟。模拟系统每个都包含266个SM、122个CHOL和11861个水分子。每个模拟在半各向同性压力边界条件下运行10纳秒。采用粒子网格埃瓦尔德方法处理长程静电相互作用。在最后3纳秒内计算系统的性质。我们将20摄氏度和50摄氏度双层系统的性质相互比较,与实验数据比较,并与纯SM双层以及二棕榈酰磷脂酰胆碱(DPPC)-CHOL双层的实验和模拟性质进行比较。模拟结果显示这两个系统总体相似,尽管30摄氏度的温差跨越了纯SM的主要相变温度。两个模拟系统的每个分子面积、脂质链序参数分布、原子分布和电子密度分布都非常相似。与我们实验室和其他实验室的模拟结果一致,我们发现在SM分子中磷酸酯氧和羟基氢原子之间存在强分子内氢键。我们还发现胆固醇羟基倾向于主要与SM的羰基、甲基和酰胺基团形成氢键,在较小程度上与甲基和羟基氧形成氢键。