Lu W C, Wang C Z, Schmidt M W, Bytautas L, Ho K M, Ruedenberg K
Department of Physics, Department of Chemistry, and Ames Laboratory USDOE, Iowa State University, Ames, Iowa 50011, USA.
J Chem Phys. 2004 Feb 8;120(6):2638-51. doi: 10.1063/1.1638732.
The method, introduced in the preceding paper, for recasting molecular self-consistent field (SCF) or density functional theory (DFT) orbitals in terms of intrinsic minimal bases of quasiatomic orbitals, which differ only little from the optimal free-atom minimal-basis orbitals, is used to elucidate the bonding in several silicon clusters. The applications show that the quasiatomic orbitals deviate from the minimal-basis SCF orbitals of the free atoms by only very small deformations and that the latter arise mainly from bonded neighbor atoms. The Mulliken population analysis in terms of the quasiatomic minimal-basis orbitals leads to a quantum mechanical interpretation of small-ring strain in terms of antibonding encroachments of localized molecular-orbitals and identifies the origin of the bond-stretch isomerization in Si4H6. In the virtual SCF/DFT orbital space, the method places the qualitative notion of virtual valence orbitals on a firm basis and provides an unambiguous ab initio identification of the frontier orbitals.
在前一篇论文中介绍的方法,用于根据准原子轨道的本征最小基来重塑分子自洽场(SCF)或密度泛函理论(DFT)轨道,这些准原子轨道与最优自由原子最小基轨道仅有微小差异,该方法被用于阐明几个硅簇中的键合情况。应用表明,准原子轨道仅通过非常小的变形就偏离了自由原子的最小基SCF轨道,并且后者主要源于相邻的键合原子。基于准原子最小基轨道的穆利肯布居分析,从局域分子轨道的反键侵入角度,对准环应变进行了量子力学解释,并确定了Si4H6中键伸缩异构化的起源。在虚拟SCF/DFT轨道空间中,该方法将虚拟价轨道的定性概念置于坚实基础上,并提供了前沿轨道的明确从头算识别。