Xu Feng, Baba Yoshinobu
Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, the 21st Century COE Program, The University of Tokushima, Tokushima, Japan.
Electrophoresis. 2004 Jul;25(14):2332-45. doi: 10.1002/elps.200405923.
We give an overview of recent development of low-viscosity polymer solutions and entropic trapping networks for double-stranded DNA (dsDNA) separations by conventional capillary electrophoresis and microchip electrophoresis. Theoretical models for describing separation mechanisms, commonly used noncross-linked polymer solutions, thermoresponsive (viscosity-adjustable) polymer solutions, and novel entropic trapping networks are included. The thermoresponsive polymer solutions can be loaded at one temperature into microchannels at lower viscosities, and used in separation at another temperature at entanglement threshold concentrations and higher viscosities. The entropic-based separations use only arrays of regular obstacles acting as size-separations and do not need viscous polymer solutions. These progresses have potential in integration to automated capillary and microfluidic chip systems, enabling better reusability of separation microchannels, much shorter DNA separation times, and higher reproducibility due to less matrix degradation.
我们概述了用于通过传统毛细管电泳和微芯片电泳分离双链DNA(dsDNA)的低粘度聚合物溶液和熵捕获网络的最新进展。其中包括用于描述分离机制的理论模型、常用的非交联聚合物溶液、热响应性(粘度可调)聚合物溶液以及新型熵捕获网络。热响应性聚合物溶液可以在一个温度下以较低粘度加载到微通道中,并在另一个温度下以缠结阈值浓度和较高粘度用于分离。基于熵的分离仅使用作为尺寸分离的规则障碍物阵列,不需要粘性聚合物溶液。这些进展在与自动化毛细管和微流体芯片系统集成方面具有潜力,能够实现分离微通道更好的可重复使用性、更短的DNA分离时间以及由于更少的基质降解而具有更高的重现性。