Kent Mary-Anne H, Huang Bing S, Van Huysse James W, Leenen Frans H H
Hypertension Unit, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7.
Brain Res. 2004 Aug 27;1018(2):171-80. doi: 10.1016/j.brainres.2004.05.059.
In normotensive rats, chronic infusion of exogenous ouabain causes hypertension involving central mechanisms. To determine whether ouabain-induced hypertension is associated with specific changes in brain Na+,K+-ATPase activity and expression, we assessed brain Na+,K+-ATPase isozyme activity and protein expression in rats treated with ouabain (50 microg/day s.c. or 10 microg/day i.c.v. for 14 days). Resting mean arterial pressure (MAP) was higher in s.c.- and i.c.v.-ouabain-treated animals vs. control (124+/-2 vs. 105+/-2 and 130+/-2 vs. 109+/-2, respectively, p<0.01). Ouabain infused s.c. or i.c.v. for 14 days had no effect on Na+,K+-ATPase isozyme activity in hypothalamic, pontine/medullary or cortical microsomes. However, the percent increase in total Na+,K+-ATPase activity produced in vitro by antibody Fab fragments that bind ouabain with high affinity (Digibind) was two-fold greater in s.c.- and i.c.v.-ouabain-treated rats vs. control, but only in hypothalamic microsomes. Thus, ouabain infused s.c. or i.c.v. does appear to directly inhibit Na+,K+-ATPase activity in the hypothalamus. On the other hand, in the hypothalamus, s.c.- and i.c.v.-ouabain infusions tended to increase alpha3 (by 30-44%), but had no effect on alpha1 or alpha2 Na+,K+-ATPase isozyme protein expression. In addition, ouabain was found to partially dissociate from the Na+,K+-ATPase enzyme following sample processing. Thus, the inability to detect a decrease in enzyme activity in the hypothalamus in response to ouabain may be due, in part, to an increase in enzyme expression and the dissociation of ouabain during sample processing.